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Preface 
 
These are the proceedings of IPTComm 2010, the fourth of a successful series of conferences on 
Principles, Systems and Applications of IP Telecommunications. This year’s edition of the conference 
is held in Garching b. München, Germany, on August 2 and 3, 2010. 
The scope of the conference covers new services and service models, management and resilience, 
mobility, and a special focus on security.  
The call for papers asked for submission of full papers, short papers. It attracted 50 paper submissions.  
The technical program committee chairs ensured a rigid review process. For each paper, at least three 
reviews were received.  
The technical programm committee decided to accept 12 papers as regular papers for the conference, 
resulting in an acceptance ratio of 24 %.  
Additionally, 4 papers were selected to be presented as “Work-in-Progress” papers for presentation at 
the conference.  
We are very grateful to the all members of the technical program committee and to all external 
reviewers for their hard work, in particular to the TPC co-chairs Gonzalo Camarillo and Vijay K. 
Gurbani, who made a tremendous effort, and who ensured that the conference selected highly 
attractive papers. 
A separate call for industrial talks and demonstrations attracted a number of highly interesting 
submissions, of which the industrial talks and demonstrations committee selected 5 industry talks and 
8 demonstrations.  
The conference is hosted by the Leibniz Supercomputing Centre (LRZ) of the Bavarian 
Academy of  Sciences and Humanities, which is the scientific computer centre for all Munich 
Universities and other research organizations within the greater area of Munich. It supplies 
more than 100.000 users with IT services and acts as an IT competence centre for all its 
customers. 
We would like to thank all authors, conference organizers sponsors for their support of IPTComm 
2010! 
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Georg Carle Helmut Reiser 
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ABSTRACT 
The Future Internet architecture, based on the integration of 
existing networks and services, and the addition of many 
new devices like sensors, face a series of important 
technical challenges, one of them being the management of 
diverse user identities. The diversity and plethora of the 
services and procedures affected by the unassociated 
existing user identities stress the necessity for a holistic 
solution to deal with the different aspects of the identity 
management problem. Existing efforts propose limited 
identity solutions that can only be applied within well 
defined boundaries and cannot extend their functionality to 
support converged network environments and service 
operations across different administrative domains. This 
paper presents a Dynamic Identity MApping N’ Discovery 
System (DIMANDS) as a holistic identity solution for large 
scale heterogeneous network environments. This solution 
offers cross federation identity services and is based on a 
universal discovery mechanism which spans across 
different networks, layers and federations. It is also 
empowered with a unified trust framework which can 
collect and process diverse trust information to provide 
trust decisions on a widely accepted format. 

Categories and Subject Descriptors 
C.2.m [Computer Systems Organization]: Computer-
Communication Networks – Miscellaneous  

General Terms 
Management, Design, Security. 

Keywords 
Identity Management, Trust Management, Privacy, 
Discovery. 

1. INTRODUCTION 
Future Internet promises to offer a unified network 
environment able to provide innovative services agnostic to 

the underlying infrastructure. To achieve this, current 
network concepts, must be redesigned, translated or 
mapped in such a way that diverse data may travel and be 
processed among different networks, contexts and 
administrative domains. Presently, users are owners of 
diverse identities and of unrelated identity information, 
valid and used in different contexts and for different 
purposes. We see this fragmentation as one of the major 
obstacles for developing cross-domain user-centric services 
in the Future Internet. 

Despite the fact that Future Internet advocates network 
convergence, existing research efforts examine the identity 
problem partially, placing it in very specific and narrow 
contexts. Proposed solutions often implement identity 
frameworks which are usually applicable only within well 
defined administrative boundaries resulting in the creation 
of “Identity Management islands with interoperability 
issues” [1]. Cross-domain IdM systems have also been 
proposed to support environments with multiple co-
operative providers and technologies (e.g. converged 
networks, clouds, federated testbeds etc), but the vast 
majority of them also suffer from the same symptom: they 
introduce customized identity formats; preconfigured 
trust/business relations; custom procedures. These 
peculiarities make them applicable only within the 
federation of domains (e.g. federation identities) thus any 
attempt for interoperating across federations becomes 
impossible.  These practices have just shifted the problem 
from the isolation of domains to the isolation of federations 
and certainly away from network convergence. 

The IdM problem in the Future Internet must be 
approached from a different perspective. Numerous 
domains, federations, cloud-hosted applications etc, which 
apply different identity schemes, adjusted to their internal 
procedures, will always exist e.g. for the Internet of Things 
which will connect not only users but additionally also 
huge amounts of sensors and slave-labour devices. 
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Enforcing new identity management systems or new 
identity formats which must be adopted by everyone is 
therefore not a feasible solution. Towards the Future 
Internet, the only way to address the IdM problem is to 
permit today’s administrative domains to create customized 
identities, based on their needs and technologies, and 
support network convergence by creating the appropriate 
dynamic identity associations between these domains. 
Trust/business relations should dynamically flourish in an 
ad-hoc and autonomously way free of closed and 
centralized mechanisms. The proposed solution must act as 
the glue between the existing diverse identity concepts and 
support interoperability allowing diverse identity data to 
travel across different domains and federations. Such a 
solution can be realized only through an autonomous and 
independent system that exclusively provides identity 
services across different domains, federations, technologies 
and layers without affecting internal network procedures. 

Motivated by the aforementioned arguments, this work 
proposes a Dynamic Identity MApping N’ Discovery 
System (DIMANDS). DIMANDS is an autonomous and 
independent system designed to organize all kinds of 
identities that a single user may own as a member of 
various providers (e.g. government organizations, 
applications, service or network providers). With 
DIMANDS, the end user can form a dynamic online profile 
and allow third parties to automatically discover identity 
information about him irrespectively of the identity he is 
currently using or his network availability. The system is 
also able to setup and negotiate new trust relations breaking 
the trust staticity of current identity systems. Accordingly, 
the system does not collect or store any private identity data 
but points to authorized places that hold and manage this 
information.  

The rest of the paper is organized as follows. In section 2 
we present the current state of the art and in section 3 we 
describe our identity management and discovery 
framework. In section 4 we introduce our trust dynamic 
framework which deals with trust establishment inside and 
outside DIMANDS borders while in section 5 we present 
how the overall system supports critical cross domain 
identity issues. In section 6 we discuss security privacy and 
trust issues about DIMANDS. Section 7 presents the 
evaluation of our system and finally in section 8 we 
conclude this paper discussing open issues and future work. 

2. PREVIOUS WORK 
Identity management is an intensively researched topic in 
many academic, enterprise and standardization bodies. 

Liberty Alliance [2] group has proposed Liberty 
Federation, a framework for federated identity 
management. Based on its specifications, OASIS formed 
the Security Assertion Markup Language (SAML) 2.0, an 
XML based standard for data exchange between Identity 
Provider and Service Providers. With federated identities, 

providers that reside in a Federation Group bind together 
various login identities assumed by one user. In this 
framework providers form static bindings between some of 
these identities, while there is no identity blinding since the 
closed Federation Group ensures the desired trust. 

According to the OpenID [3] proposed solution, when a 
user contacts an OpenID-enabled web site instead of his 
username, he inserts a URL. The OpenID site redirects the 
user to a site that corresponds to the submitted URL, which 
in turn, performs the user login operation. OpenID is fast 
becoming the de-facto solution for secure login in the 
internet as it is user-friendly, user centric and supports 
features like Single Sign On (SSO). Nevertheless, this 
approach (due to the required URL login), is restricted only 
to application layer identity solutions excluding integration 
with lower layer identities. Its functionalities are limited to 
user authentication while its framework does not support 
management of multiple identities. 

Information Cards [4], a Microsoft-initiated solution, is a 
user-centric mechanism to store and manage online 
identities. Using a client software, users can create, delete, 
and modify the identity profiles (Information Cards) they 
use in the network thus controlling the kind and amount of 
information revealed in the network. With this approach 
however, features like cross-layer SSO are not supported 
while its architecture does not link the different names 
assumed by one user. Privacy is granted through identity 
isolation and there is no formation of a single network 
entity to provide cross-layer identity solutions in the NGN.  

Project Higgins [5] is another identity framework which 
unifies all identity interactions across multiple 
heterogeneous systems through a common user interface 
metaphor also called Information Cards (i-cards). The 
represented identities (Digital Subjects) and their Identity 
Attributes are exposed in a Context through a data model, 
described by OWL. It is a user centric system with the end 
users having a single point of control over multiple 
heterogeneous identities preferences and relationships. 
Even though the project presents a unified representation 
for every type of identity, the identity framework is again 
limited in the application layer identities and attributes 
without making clear how lower level protocols may be 
able to comprehend and adopt it. 

The DAIDALOS Project [6] proposes a cross layer identity 
management system based on the management of all 
different profiles a user may have in the network. These 
profiles are linked together into multiple groups, creating 
the so called Virtual Identities (VIDs). Two or more VIDs 
cannot be associated with each other, providing strong 
privacy and security. Project SWIFT [7], a European Union 
funded project started in 2008, is also based on VIDs. 
Formation and submission of VIDs though, is a static 
procedure. Every new service has its unique restrictions 
and requirements and users must always create, organize 

2



and remember numerous VIDs. A complete unified 
network entity cannot be constructed and existing identities 
are replaced with VIDs forcing all systems to adopt handle 
and transport this new type of identity. 

Project PRIME [8] defines a system which consists of two 
parts: a service-side module which mainly provides access 
control functionalities, and handles trust and policy 
negotiations and a user-side module (PRIME middleware) 
which runs on the user's computer. The PRIME 
management console enables the user to control the 
disclosure of his personal data. PRIMElife [9] is the follow 
up project launched in 2008. These projects offer many 
solutions in identity management, especially in privacy. 
But again their proposal rejects identity convergence for 
security reasons, not making clear how it can be integrated 
in the NGN environment. 

Other identity systems designed to face the identity 
challenges are Shibboleth [10] and Athens [11]. Both these 
systems propose solutions through a secure login procedure 
but like the majority of the research are limited to 
application layer identities.  

In [12] authors acknowledge the need for a widely 
deployed IdM system that must encompass identities of 
different layers, formats and business areas. This work 
describes a valid discovery mechanism but all network 
interactions assume end-users’ intervention and require 
from them to take all the final decisions about who they 
should trust and the amount of identity information they are 
willing to reveal. 

Within standardization bodies, ETSI is developing the 
Universal Communication Identifier (UCI) [13]. This 
identifier is bound to a Personal User Agent (PUA) that 
negotiates with other PUAs to deliver communication 
services between two end parties. UCIs are globally unique 
identifiers that can be solely resolved to a unique resource 
where a complete user profile resides. UCI is a cross layer 
proposal for the identity management system that is 
mapped to the NGN requirements. It requires though the 
use of a unique identifier, imposing the need for 
modification to existing systems and procedures, something 
that is not easily acceptable especially in protocols levels 
lower than the application. Furthermore the solution is 
restricted within a single domain, and it is not clear if and 
how external identities can be authenticated and then 
adopted by the system. Also the recently founded industry 
specification group Identity Management for Networks and 
Services (INS) of ETSI does not address the aspect of 
cross-layer identity resolution. 

The Focus Group on Identity Management (FG IdM) of 
ITU-T NGN GSI (SG13) is designing the NGN User 
Identity (NUI) [1], a new type of identity that will meet a 
series of NGN requirements and also provide means for 
identification, authentication, ubiquitous access to network 

and services, profile organization etc. NUI may include a 
public user identity for communication with other NGN 
users, and a private user identity for networking purposes 
like authentication with providers. Until now current 
specifications from FG IdM outline the current state of the 
identity management system presenting existing identity 
management solutions, also indicating scenarios to target 
areas and gaps that still remain unsolved. 

Finally the Kantara Initiative [14], an evolution of Liberty 
Alliance, is an effort to address the identity problem in a 
much wider landscape. But as stated in [15] “the reality is 
that it is one more layer of bureaucracy on top of already 
top-heavy structures”. Kantara proposes that smaller 
Identity solutions and also the persons creating these 
projects should become members of its large identity 
framework. Thus the identity management solution is again 
based on the formation of large scale trust group something 
that has already proved to be insufficient. 

The main problem behind current initiatives is their 
inability to transport and manage identity data across 
predefined trust areas (e.g. federations) thus they are 
incapable to expand their functionality to unconditionally 
support converged network environments. 

3. DIMANDS ARCHITECTURE 
The DIMANDS architecture is based on an innovative 
Distribute Hash Table (DHT) overlay infrastructure which 
combines the routing capabilities of DHT networks and the 
security benefits of individual Identity Providers (IdPs). 
The basic characteristics of DIMANDS overlay are: 

 Only nodes (individual IdPs) exist in DIMANDS 
overlay and not objects (identity data). 

 The overlay is used only for routing purposes (and 
not for storage of any kind of data) 

 Participating nodes cannot change their position in 
the overlay. 

DIMANDS infrastructure (Figure 1) is formed by a number 
of CHORD [16] circles, placed on top of each other to 
create a cylindrical overlay. This cylinder forms a torus, 
meaning that the upper circle and the lower circle can 
directly communicate with each other irrespective of their 
location in the torus. Newly created circles can be placed 
anywhere in the cylinder allowing DIMANDS to expand 
infinitely. One non-profit global organization (e.g. ICANN) 
will have the responsibility to define and distribute these 
circles. This organization will have no further involvement 
in DIMANDS functionality or its stored information. 

Each CHORD circle represents a predefined geographical 
area (e.g. a country) and is assigned to a Regional 
Authority (RA) that resides in this area (e.g. government). 
RAs’ responsibility is to check, evaluate, provide the 
required security credentials and finally monitor the 
behavior of the IdPs that participate in the CHORD circle 
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of their geographic area. The RAs will have no further 
involvement in DIMANDS functionality or DIMANDS 
stored information. 

.FR

.UK

CHORD  circles  representing  
geographical  areas

Identity  Providers  in  a  geographical  
zone  participate  as  nodes  of  the  

CHORD  circle  (IdPID)

Routing    in  the  
circle  is  held  
exactly  like  
CHORD  

Regional  Authorities  
monitor  CHORD  circle

Each  node  has  
neighbors  in  
other  CHORD    

circles

 
Figure 1. DIMANDS overlay. 

DIMANDS’ functionality is deployed through independent 
Identity Providers. Any kind of provider, organization, 
authority etc that wishes to join DIMANDS as an IdP, must 
first be evaluated by RA of its geographical zone. Upon 
successful validation, this IdP joins, as a new node, the 
corresponding CHORD circle and reserves a specific and 
permanent point. This point is called Identity Provider ID 
(IdPID) and it is a numeric value which indicates its 
position in the overlay. CHORD overlay structure ensures 
uniform distribution on the circle for practically an infinite 
number of nodes. 

Each overlay node (IdP) sustains a number of neighbors 
and constantly maintains secure connections with each one 
of them. These neighbors exist in its own circle and in other 
circles and their number may vary based on system’s size 
and traffic. Selecting neighbors in the same circle is carried 
out exactly like CHORD. To be able to select neighbors in 
different circles a node requests from the corresponding RA 
a list, containing the IdPIDs of the nodes that exist in the 
same point like itself in the rest of the CHORD circles (or 
close to that point). Since DIMANDS overlay is a torus, the 
nodes in this list form a virtual vertical circle thus the 
selection of neighbors in other circles is held again exactly 
like CHORD. To deliver a message destined to a specific 
point on the overlay, a node must simply forward it 
vertically to a node in another circle or horizontally to a 
node in its own circle using CHORD routing.  

The proposed architecture is designed to satisfy a number 
of key requirements in terms of performance, privacy, trust 
and security. DIMANDS is based on a hierarchical 3-level 
architecture where multiple organizations and providers 
contribute and assume well defined and separate roles, 
without being able to access data or functions that are not 

supposed to. In the two top levels of DIMANDS 
architecture reside distinguished organizations (ICANN, 
Regional Authorities) which only purpose is to provide the 
necessary orchestration to the IdPs that host DIMANDS 
actual functionality and compose the lower third level of 
the DIMANDS architecture. End-users’ private data are 
safely stored in the IdP of their choice without being 
accessible to any of the organizations of the two upper 
levels.  

The DHT architecture offers minimal management 
overhead and robustness to the system and was selected 
over other centralized or hierarchical architectures to 
support the hard trust and security requirements of an IdM 
system. Nodes (IdPs) in the overlay will rarely join or leave 
DIMANDS. Thus each node will sustain stationary 
neighbors and build long term trust relations with them. 
Any message, destined to a node in DIMANDS, will safely 
travel through a path of trusted neighbors. In any other 
centralized of hierarchical architecture the destination node 
would have to process incoming messages from unknown 
sources without always being able to validate them.  
Furthermore, in DIMANDS overlay neighboring nodes 
exchange data through secure connections, thus providing 
high levels of security to the system. In any other 
centralized of hierarchical architecture it is impossible to 
store credentials and establish secure connections between 
all of the participating IdPs to securely exchange identity 
information.  New circles and nodes can constantly join the 
overlay without affecting the functionality or the 
architecture of the system. Failure of a node has only 
temporary and local effects and does not affect the overall 
system. Its neighbors may temporarily route messages from 
alternative paths, and there is no data loss since each node 
is responsible for maintaining the data of its own users.  

Assigning CHORD circles to specific geographical areas 
provides locality to DIMANDS overlay and advances 
system’s performance. End-users’ identities will mainly 
exist in providers located in their geographical area (e-
government, e-health, telco services) thus message 
exchanging between entities that reside in large distances in 
the actual network is minimized. Better locality can be 
achieved, if the nodes in each geographical circle are 
organized in a locality aware CHORD. It must be clarified 
that CHORD was selected among other existing DHTs due 
to its ability to improve locality by only modifying the 
neighbors on each node on the circle and not the position of 
the node, thus satisfying DIMANDS requirement for 
stationary nodes. 

3.1 User Account 
In DIMANDS a user may select the IdP he prefers and trust 
the most, and create an account. Each DIMANDS account 
is defined by an identifier called User account ID (UsID) 
which is a numeric value assigned and known only by the 
IdP. Linked to this UsID exists a unique database where the 
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user can store the identity information he wishes (Figure 2). 
This database has four fields. The “RID” and “TRID” fields 
which hold representations of all user’s identities, the 
“Domain Name” field where all the domains that host the 
profiles for the corresponding user’s identities are stored 
and a variable set of fields called “Attributes”. 

DIMANDS obfuscates the real identities and replaces them 
with Random Identity Numbers (RIDs). An RID is a unique 
representation of a single identity and is stored in both 
DIMANDS’ IdP and the organization’s (the one that holds 
the profile for this specific identity) databases. Any 
communication between the organization and DIMANDS 
regarding an identity is carried out by using the 
corresponding RID, providing robust identity obfuscation. 

UsID: 1311652232 
TRID RID Domain 

Name 
Attributes 

35124 1234.6334124463 umts.com Service: Tel, video 
Network Authorization: Yes 

61234 1234.1254576222 telco.com Service: Tel, video, IM 
Network Authorization: Yes 

78123 1234.6982145781 gov.uk User Validation: Yes 
Age Validation: Yes 

Location Validation: Yes 
Figure 2. The database stored in DIMANDS’ User 

Account. 

RIDs are formed as the concatenation of the Identity 
Provider’s IdPID (L bits) and the output of a private key 
cryptographic function (like e.g. AES or RC4) that receives 
as input a number composed of the user’s UsID in the 
higher N bits, followed by a consecutive number, in the 
lower M bits (N+M bits).  

Cryptographic  
Function
(encode)

UsID Consecutive  
number

RID

input
N-‐bits M-‐bits

IdP’s  Private  key

key

output

Cryptographic  Function
(decode)

N-‐bits M-‐bits

Encoded  
value

input

IdP’s Private  key

key

output

UsID

The  first  N-‐bits  of  
the  output  reveal  
the  UsID of  the  

user

encryption

decryption

(M+N)  bits

(M+N)-‐bits

IdPID Encoded  
Value

L  bits

(L+M+N)  bits

IdPID
L  bits

(L+M+N)  bits

RID

Used  for  routing  
over  DIMANDS  

overlay

 
Figure 3. Random Identity Number (RID). 

The use of the consecutive number is to produce 2M 
random and uncorrelated RID’s making it impossible for 
someone to link network identities with real end-users. 
Using the first L bits of an RID contained in a request, 
DIMANDS may route on the overlay and locate the 

corresponding IdP that this request is targeted to. Since 
DIMANDS nodes are stationary, the request will always be 
transmitted to the correct IdP. This IdP, by decoding the 
remaining (M+N) bits of the RID (using its own 
cryptographic key), may retrieve user’s UsID, and thus 
identify the user that the request is referred to (Figure 3). It 
must be noted that decoding an RID reveals an end-user 
and not the identity that represents. A TRID is an identifier 
generated by the organization (the one that holds the profile 
for this specific identity) and corresponds to a specific RID. 
It has been introduced to avoid revealing the RID value 
outside DIMANDS borders. Any communication between 
the organization and an entity (other organization, provider 
etc) outside DIMANDS regarding an identity is carried out 
using the corresponding TRID. The RID and TIRD values 
are NOT introduced as new global identifiers and remain 
agnostic internal network procedures. The providers and 
DIMANDS exchange the RIDs or TRIDs only in the IP 
network, which in turn can be mapped on to existing 
internal local identifiers. 

The “Attributes” field is an expandable set of optional 
fields that contains descriptions about the stored RIDs. The 
“Attributes” field does NOT contain any privacy or 
security data that may expose user’s identity information. 
For instance the Attribute “Service” describes what service 
can this RID support and not any information e.g. about 
user authentication to this service. The Attribute “Age 
Validation” indicates that the corresponding provider - in 
the “Domain Name” field - can validate user’s age but it 
does not contain user’s actual age. No real identity data 
reside in this database. 

3.2 DIMANDS-Client 
The DIMANDS-Client is a web-based application designed 
to help the end-users to manage their digital identity data 
with DIMANDS IdPs from many end devices like e.g. PCs, 
netbooks or mobile phones. Access to this application is 
governed by a hardware token, the DIMANDS-card. 
DIMANDS-card can be a smart card activated by a PIN i.e. 
a mobile phone Universal Integrated Circuit Card. End-
users may download and install the DIMANDS-Client 
application locally in one or more of their end-devices and 
before launching the app the end-user is asked to connect to 
the end-device his DIMANDS-card and insert the correct 
credentials or PIN. 

 In the DIMANDS-card an encrypted database is stored 
which holds the same identity data as the database in the 
DIMANDS IdP but instead of the value TRID, it contains a 
field with users’ real identities. Based on this database the 
end-users can see their actual identities and perform basic 
functions and procedures like registration of new identities, 
deletion or modification of existing data, creation of new 
rules etc. After completing the management of their 
identity data the users may upload to their IdP account the 
updated database and the specific rules and policies that 
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organize the data stored in it. This upload is held over a 
secure connection between DIMANDS-Client and the IdP. 

The responsibility for developing and distributing the 
DIMANDS-clients and associated DIMANDS-cards is 
assigned to the IdPs that participate in the DIMANDS 
infrastructure. Both of these components must meet a 
predefined and very specific set of obligatory security and 
privacy requirements. Each IdP may modify them only by 
adding improvements in security. The exact interface of the 
application and its full capabilities are not described since 
they are outside of the scope of this paper. 

3.3 DIMANDS overall architecture 
Figure 4 depicts how the different DIMANDS components 
and elements thereof form the overall DIMANDS 
architecture, and how this architecture interacts with other 
external entities like service providers. 

DIMANDS  IdP Database
DIMANDS  overlay

ProviderA.com
(provider)

User  John
John  has  many  
identities  – devices  

UoP.gr
(provider) …

Database  of  
uop.gr

TRID RID Username

61234 1234.7321214585 john@uop.gr

John  has  a  DIMANDS  account  
in  the  Identity  Provider  IDP_1

DIMANDS-‐Client

DIMANDS-‐card  Database

DIMANDS-‐app  securely  
connects  with    DIMANDS  IdP

account  and  updates  the  stored  
information

DIMANDS-‐Client  access  to  
DIMANDS-‐card  database  
requires  user’s  approval

John  manages  his  
identities  through  
DIMANDS-‐app  

UsID:0261311652231
Name – id RID Domain 

Name
Attribute Service

(imsi)123….12 1234.6334124463 umts.com Service: Tel, video
Network Authorization: Yes

john@uop.gr 1234.7321214585 uop.gr Service: email
(tel)+31…1121 1234.1254576222 telco.com Service: Tel, video, IM

Network Authorization: Yes
John Smith 1234.6982145781 gov.uk User Validation: Yes

Age Validation: Yes
Location Validation: Yes

IDP_1
(IdPID:  1234)

Communication  
to  DIMANDS  is  
held  only  by  
using  a  valid  

RID

UsID:0261311652231
TRID RID Domain 

Name
Attribute Service

35124 1234.6334124463 umts.com Service: Tel, video
Network Authorization: Yes

61234 1234.7321214585 uop.gr Service: email

78123 1234.1254576222 telco.com Service: Tel, video, IM
Network Authorization: Yes

 
Figure 4. DIMANDS overall architecture. 

Only validated providers may issue requests to retrieve 
information from DIMANDS. Requests can be sent to any 
one of the DIMANDS’ servers, and then forwarded to their 
final destination. DIMANDS seeks to be a totally 
independent system thus discovery of a DIMANDS server 
is not held through DNS (Domain Name System). Each 
service provider, organization or any other entity that wants 
to submit requests to DIMANDS must acquire a list of 
available DIMANDS servers only by the RA of its 
geographical area and establish a long term secure 
connection with one of them. The long term connection is 
required for two reasons. The first one is to minimize 
traffic to RAs for the retrieval of available DIMANDS 
nodes and the second one is that long term connections 
build gradual and sufficient trust relations between 
DIMANDS nodes and outside entities that ask for 
information, thus enhancing system’s security. It must be 
noted that the response of a submitted request is returned 
back by the DIMANDS node that sustains a long term 
secure connection with the requester, and not by the IdP in 

the overlay that actually processed the request. This is 
required for security reasons to avoid man in the middle 
attacks. 

3.4 New Identity Registration 
Each time a user creates a new account in a service 
provider or an organization, a profile with a username is 
created in the corresponding provider’s database. If the user 
wants to register this new username to DIMANDS he must 
complete the following procedure (The provider must have 
a Web Page compatible with DIMANDS architecture). 

ProviderEnd  User

Store  (Username/Rid)  
pair

Add  new  pair  
(Username,  RID)

DIMANDS  IdP

Login

DIMANDS-‐Client

Select  “Add  New  
Identity”  option

Enter  provider’s  URL
Secure  connection  

Login  (credentials)

New  RID

Add  new  pair  
(Username,  RID)

DIMANDS-‐card

Store  (Username/Rid)  
pair

Generate  new  
RID

Get  New  RID

User  validated  OK  

Provider  Validation

 
Figure 5. New Identity Registration message flow. 

The user logs in to the DIMANDS-Client and selects the 
“Register new identity” option (Figure 5). He is then asked 
to insert the URL of the provider that holds the profile for 
the corresponding username. The DIMANDS-client 
establishes a secure connection with provider’s Web Page 
and the user is asked to undergo a second login in 
provider’s Web Page to prove that he is the legitimate 
owner of the username he wants to register. (Credentials for 
the second login must have been provided to the user with 
the creation of his new account). As soon as the user is 
validated, DIMANDS-client communicates with the IdP 
and requests the generation of a new RID. Before the IdP 
produces the new RID it is mandatory to validate the 
provider that holds the profile for the corresponding 
username. This validation is required to ensure that no 
malicious party registers in DIMANDS false links or data 
to perform phishing attacks. After the provider is validated 
a new RID is generated and transmitted back to the 
DIMANDS-client which binds this new RID with the 
username and stores it in the local encrypted database 
(without informing the IdP of the username or its binding 
with the generated RID). Finally, DIMANDS-client 
transmits the RID/username pair to the provider to be 
stored in its database too. This procedure must be held only 
once. The provider must then generate and frequently 
update the TRID for this identity. 
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4. TRUST FRAMEWORK 
Identity discovery is the first step in every single 
interaction but afterwards there is another issue to solve, 
the lack of dynamic trust support.  

IdM systems manage trust in different ways as stated in 
[17] or [18], but it is always handled in a very static 
fashion. For instance, SAML employs pre-existing trust 
relationship, by means of PKI, between the Relying Party 
and the Attribute Provider [19]. Shibboleth inherits from 
SAML this model. Thus, Shibboleth federations imply the 
aggregation of large lists of providers that agree to use 
common rules and contracts. The process might require 
human intervention being even more rigid. The drawbacks 
of this kind of trust model are well known: hard to deploy 
and maintain, and high dependence on central authorities 
[20].  
OpenID did not consider trust in the beginning (trust-all-
comers model). However, a new OpenID extension called 
PAPE (Provider Authentication Policy Extension) [21] has 
been approved in order to enforce trust mechanisms. PAPE 
provides means for RPs and OpenID Providers to request 
and advertise previously agreed policies. Others, as WS-
Federation and Liberty Alliance, resemble PKI trust models 
between Certification Authorities (CAs). These models are 
typically implemented by means of trust lists containing 
trustworthy authorities that are manually configured by an 
administrator.  
To overcome the aforementioned trust staticity, two 
different paradigms are applied in the trust framework: trust 
management and trust negotiation. So, flexibility in trust is 
provided while security and privacy are guaranteed. In a 
high dynamic ecosystem, as Future Internet would be, trust 
might be handled mimicking humans’ behavior, 
considering though the history of interactions, the 
environment, and the scope to derive trust levels for every 
request.  

The trust framework does not store data in DIMANDS 
user’s accounts and is not combined with the identity 
organization and discovery mechanism. In fact, our aim is 
to minimize the dependence on central authorities or 
previous configuration to allow entities to be more 
autonomous and capable of making P2P trust decisions. 

DIMANDS exploits this framework’s functionality to 
address the trust issues that arise inside and outside its 
borders. In this way, interactions between providers, IdPs, 
and users are seamlessly achieved. Such interactions could 
imply bridging trust models across disparate domains, as 
well as negotiating several options such as protocols, 
multiple identifiers, flexible attributes, a common set of 
policies, obligations, and procedures regarding access 
control, information disclosure or treatment, etc. No trust 
data must exist in user’s DIMANDS accounts, in order for 

the system to meet its hard privacy and security 
requirements. 

The system provides trust services to allow new comers as, 
IdP, service providers or external entities, to negotiate trust 
by exchanging requirements and credentials. The trust 
framework can be instantiated in every single entity willing 
to participate, can be shared by several entities, or used as a 
trust broker for an administrative domain. 

The following sections describe our trust framework. The 
Pervasive Trust Manager is in charge of handling trust in 
stationary state, in other words, maintains a trust relation 
after it has been set up. Existing trust relations are 
monitored using evidences, context and preferences dealing 
with cooperative attacks, botnets and virus. The Pervasive 
Trust Negotiation module is the bootstrapping module. It 
handles interactions with estrangers deriving a trust relation 
for the first time, enables dynamic trust establishment to 
increase privileges or handles important context (or 
preferences) changes that require a new relation to be 
established. Both modules manage the risk associated to 
establish and manage relationships with a certain 
uncertainty degree. 

4.1 Pervasive Trust Negotiation  
This module assists entities to select policies 
(requirements), credentials, and resources to disclose, 
according to strategies, preferences, and context. The 
objective is to achieve a fair P2P trust negotiation. The 
module uses a human-mimicking decision engine able to 
simplify problems. Moreover, if a human is involved in the 
process, the module can graphically present those problems 
in comprehensive way allowing he/she to understand what 
is happening despite his/her technical training. 

In order to authenticate and authorize estrangers, trust 
negotiation rely on the fact that any resource is protected by 
a policy that express which credential(s) should be 
disclosed to obtain access to it. [22] describes the 
requirements that trust negotiation systems should cope 
with. Requirements should be disclosed gradually, 
according to the level of trust reached until the moment, 
since they might contain sensible information [23]. 
However, to protect entities against rogue or greedy peers, 
that harvest unnecessary credentials from others, the 
process should be driven by a decision engine.  

The trust framework is agnostic in terms of policy or 
credential language and encoding. The negotiation is 
governed by policies from different editors that protect 
resources. A resource can be protected by several policies 
and a policy can protect several resources. For that reason, 
policies are split into parts that are called “policy items”. A 
policy item is a formal definition, therefore expressed with 
adequate semantics, for a requirement. The formal 
definition of a resource, guarantees that other peers would 
be able to find out which credential(s) should be disclosed 
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in order to satisfy it. Finally, a resource is any information, 
service, mechanism or credential, in general any object, 
which its disclosure implies a risk. Policy items are 
considered also resources since it disclosure might be 
dangerous.  

To drive the credential exchange towards a fair negotiation, 
for either bringing up a new trust relation or to increase 
privileges, we place every object (resources or policy 
items), subject to be part of the decision, into a decision set, 
as shown in Figure 6.  The decision set is composed by 
object descriptions that are collections of attributes. In a 
highly dynamic scenario, is unfeasible to find a common 
model to describe every object, especially if objects can be 
different in nature. Thus, the amount of attributes used to 
describe objects depends on the nature and the available 
information. The Pervasive Trust Negotiation module 
fetches then context and preferences the environment. It 
derives an agnostic decision set from the input by 
transforming attributes using generic attribute taxonomy. 
The taxonomy is able to cope with quantitative, ordinal and 
membership data.  

Once the engine derives the generic attribute taxonomy, it 
includes a virtual object called “status” into the decision 
space. The status object contains attributes, according the 
derived taxonomy, which reflect the information known up 
to the moment, as disclosed credentials, environment 
information, and preferences. Then the engine computes 
dissimilarities among entities and produces a dissimilarity 
matrix, similar to a covariance matrix. 

 
Figure 6. Pervasive Trust Negotiation Engine 

The Pervasive Trust Negotiation module uses multivariate 
statistics to simplify the problem by reducing the 
dimensionality of the input space to a common set of 

attributes. To achieve that, the engine process the matrix 
with ALSCAL Multidimensional Scaling (MDS) [24], 
which uses alternate least squares, together with weighted 
dissimilarities, to combine both metric and non-metric 
analysis. The algorithm deals with spare matrixes (with 
different number of attributes) so it is suitable for the 
problem we face with highly dynamic environments 
(absence of some data). 

In order to find out the next credential to exchange or the 
next requirement to commit, the Pervasive Trust 
Negotiation engine takes the simplified decision space and 
measure the distance between any object and the status 
object. This distance is directly interpreted as a measure of 
risk. After a successful requirement fulfillment, a change 
on the preferences or environment data, the engine 
computes again the dissimilarity matrix, simplifies the 
problem, and computes the risk again obtaining the next 
step.  

MDS has been successfully used to solve similar complex 
problems as classifying music [25], or selecting the most 
appropriate network from a heterogeneous set [26]. When 
applied to trust negotiation, it provides robustness (works 
in the absence of data) and agnosticism (works with any 
object) if compared to Petry Network driven trust 
negotiation [27]. Compared to solutions that make policies 
publicly available but obfuscate them including fake 
policies [28], our system make policies private and release 
them according to a risk model, thus it does not suffer from 
cooperative attacks that end up finding the fake policies. 
Other solutions define their own language as [29] and make 
peers to exchange complex graphs but they lack of 
agnosticism or the context is not well addressed.  

4.2 Pervasive Trust Manager  
This module is responsible for managing internal and 
external trust information, and maintaining dynamically the 
trust and distrust lists updated. The internal trust 
information is obtained from a local repository, which 
contains data related to the entities’ behavior. On the other 
hand, external trust information is obtained from trusted 
third parties (TTPs), making use of the common knowledge 
by means of requesting and collecting reputation 
information, so maintaining a history of the interactions 
and collecting recommendations from other entities.  

From such trust information, the Trust Manager models 
trust evolution over time, as it has a clear impact in risk 
management and trust decisions. Trust evolution represents 
that trust learning is gradual, subjective and dynamic. This 
takes into account the environment as well as historical 
evidences or reputation information. So, this module is 
enriched with more complex functionality such as risk and 
policies management, and uses of techniques applied to 
cooperation and collaboration models. These advanced 
functionalities allow considering timing, analysis of cached 
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trust material, update to policies, agreements fulfillment, 
etc., in order to achieve a better trust management.   

The trust metrics used are specified in order to make easier 
the mapping from different trust models applied to every 
domain similar to the problem of identity formats. 

5. DISCOVERY – IDENTITY 
CONVERGENCE 
Being an independent and autonomous entity, DIMANDS 
has the ability to provide cross domain/federation identity 
services. Figure 7 presents a cross domain service delivery 
scenario that requires the co-operation of providers which 
reside in multiple and unassociated federations. User 
“user@webstore.com” logs on his account in provider 
“webstore.com” and requests a specific service (e.g. an 
online purchase). In order to complete the transaction, 
provider “webstore.com” must contact other providers (e.g. 
paypal.com, supplier.com etc) which all participate in the 
federation F1.  

The “supplier.com” provider though needs to validate 
user’s age information against an entity that might not be 
part of the federation F1 but that should be trusted.  

Existing literature fails to support the above operation 
because the “supplier.com” cannot autonomously discover 
where the desired information resides (is restricted to use 
only information that exists in the federation or the cloud) 
and even if it somehow knew that the information existed 
in the gov.com” organization, the username 
“user@webstore.com” means nothing to “gov.com”. 

webstore.com

DIMANDS
overlayUser supplier.com

Service  Request:  
user@webstore.com

Federation:    Fd1

gov.com

Federation:    Fd2

Service  Request:  
user@webstore.com

DIMANDS  Req:  
user@webstore.com

Age  validation
DIMANDS  Req:  RID  

(user@webstore.com)
Supplier.comwants:  Age  validation

DIMANDS  Resp:  List  
(domains/TRIDs)

Age  Validation
user:  TRID

Service  Response:  OK  
user@webstore.com

Service  Response:  OK  
user@webstore.com

 
Figure 7. Cross federation service delivery using 

DIMANDS. 

Using DIMANDS functionality, the provider 
“supplier.com” constructs a DIMANDS request asking for 
age validation. Since it has no knowledge of a valid RID 
(the user does not have an active account in supplier.com) 
to directly contact DIMANDS, the request is transmitted to 
the provider “webstore.com”, which in turn retrieves from 

its database the corresponding RID and forwards the 
request to DIMANDS on behalf of the “supplier.com”. 
DIMANDS validates that the “supplier.com” is a legitimate 
provider and responds a message containing a list with 
domains, which can validate user’s age and a number of 
TRIDs. The “supplier.com” provider receives the list and 
among the containing providers chooses the “gov.com” 
organization that trusts the most (participate in a different 
federation). Using the corresponding TRID, can now 
directly contact the organization and acquire the desired 
information  
However, it cannot be assumed that the above list will 
always contain trusted providers. Accordingly, if the 
“supplier.com” and the organization and “gov.com” had no 
previous trust relation and interacted for the very first time, 
they should set up a trust relation dynamically.  
To accomplish that task based on our proposed trust 
framework, both entities would engage in a trust 
negotiation. For instance, “supplier.com” derives its 
dissimilarity matrix and looks for the next step in the 
negotiation. It sends a basic authentication requirement to 
“gov.com”. “gov.com” authenticates with a PKI certificate 
and requests authentication to “supplier.com”. After the 
basic authentication phase, both entities know they are 
talking to the appropriate machine. According to 
“supplier.com” policy, “gov.com” must demonstrate that is 
a valid source for verifying the age. Nevertheless, before 
going further, “gov.com” calculates its decision space and 
requests “supplier.com” to send a credential asserting it is a 
valid supplier and requests it to agree on the privacy policy.  
In this way, “gov.com” protects itself from rogue peers. 
Once “supplier.com” fulfills those requirements, 
“gov.com”   sends a set of attributes within a SAML sheet 
that demonstrates it is a valid source and validates the age. 
Both entities will convey their brand new trust relations to 
the trust management module so next interactions, under 
the same scope, would be faster. 

6. SECURITY, PRIVACY & TRUST 
ANALYSIS 
Security: Even though DIMANDS is formed by multiple 
individual IdPs its architecture provides maximum security 
to the system since all communication, is held over secure 
connections. Encryption for all messages provides data 
integrity and monitor of the participants’ behavior by the 
RAs protects the system from internal malicious parties. 
Monitoring the IdPs of a geographical area may be held 
through our proposed Pervasive Trust Manager, part of the 
trust framework. Thus, each IdP might be evaluated by its 
neighbors and inappropriate actions would be reported to 
the RAs to generate evidences for future trust decisions. 
Any kind of unaccepted behavior from an IdP may result in 
its permanent removal from the system. Only validated 
providers can register or acquire information from 
DIMANDS system. This validation can be achieved 
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through certificates and ensures that no malicious entity 
will have the ability to insert false links or data to perform 
e.g. phishing attacks, or illegally collect identity 
information. Misbehaving outside entities may be denied of 
DIMANDS services. DIMANDS-Client is one of the most 
essential parts in DIMANDS architecture thus any security 
flaw may cause serious data exposure. Firstly it must be 
ensured that the application cannot be modified and 
distributed from any unauthorized party. Its distribution 
should be performed only by the IdPs through a secure site 
which supports SSL client side authentication. As 
mentioned above, DIMANDS-Client is a web-interfaced 
application. The web interface advances the usability of the 
system making it more user-friendly. However this imposes 
many critical security threats e.g. cross-script attacks. 
DIMANDS-Client cannot be developed on top of existing 
browsers because the system will constantly be subjected to 
the plethora of different security flaws that these browsers 
may have. Thus we propose that DIMANDS-Client should 
be an independent application designed in such a way that 
meets specific security requirements, capable of supporting 
generic web browsing, used only for DIMANDS purposes. 
Furthermore for DIMANDS-card, it must be ensured that 
its connection with DIMANDS-Client is absolutely secure. 
Many secure frameworks exist in literature that provide 
security and data integrity for the use of smart cards. 
Mutual PKI (Private Key Infrastructure) authentication is 
mandatory and frequent re-authentication is advised, to 
ensure that DIMANDS-card is connected with a valid and 
secure DIMANDS-Client. Finally, for the protection of 
DIMANDS from threads that apply in all large scale 
networks e.g. DDoS attacks, many security solutions exist 
in literature that can be exploited based on the nature of the 
attack. This kind of security analysis is outside of scope of 
this paper. 
Privacy: Considering privacy, the 3-level architecture of 
DIMANDS ensures that each user’s data will only remain 
under the control of the Identity Provider of his choice, and 
will not be accessible by any other entity in the system (e.g. 
ICANN or RAs). The obfuscation of the real identities 
(with the use of RIDs and TRIDs) ensures maximum 
security from monitoring and data collection even within 
DIMANDS. However the strongest part of DIMANDS is 
the nature of the stored information. DIMANDS holds 
irresolvable identity mappings and descriptions of their 
capabilities. No actual identities or identity data exist in 
DIMANDS. The actual information are distributed and well 
protected in the providers and the organizations that issued 
user’s real identities. 
Trust: DIMANDS assigns CHORD circles in geographical 
areas to advance trust with its users. End-users most likely 
will trust IdPs that reside in the same geographic region, 
share the same culture, and obey the same security policies 
and rules enforced by a locally distinguished Authority. Of 
course the strongest evidence on why should the end-users 

trust DIMANDS, is the fact that stored information in 
DIMANDS do not carry any actual identities or identity 
data and cannot lead to personal information exposure. 
DIMANDS proves its trustworthiness to the IdPs that 
participate in its infrastructure and the outside providers - 
organizations that exchange information with, through the 
careful design of its architecture that ensures maximum 
privacy and security. 
The long-term connections between DIMANDS nodes and 
external providers combined with the trust relations 
between DIMANDS overlay neighbors provide high levels 
of trust and security for the overall system. Furthermore 
with the adoption of our proposed trust framework that 
provides trust services to allow new comers (e.g. IdPs, 
service providers or external entities) to negotiate trust by 
exchanging requirements and credentials DIMANDS 
succeeds in supporting the essential issue of trust not only 
inside, but also outside its borders 

7. EVALUATION 
DIMANDS’ overlay is formed by servers connected by 
means of a DHT overlay. Organizing a system as a DHT 
though, imposes additional packet delay and traffic load 
because of the generated requests due to the overlay 
routing. For the reliability of our measurements we used a 
widely accepted simulator tool, the OPNET Modeler v.14 
and real round trip time measurements taken from the 
Meridian King data set which provides RTT measurements 
among 2000 nodes and reflect RTT latencies among 
globally distributed DNS servers. 
In our scenario each node in DIMANDS randomly accepts 
requests destined to a random node in the overlay. Once a 
request reaches its destination a response is generated and 
transmitted back to the node that initially accepted the 
request. Even though this response can be directly 
transmitted back to the initial node, our scenario examines 
the worst possible (and absolutely secure) scenario where 
DIMANDS responses follow back the same overlay path 
of trusted nodes as the requests. The measured values in 
all the examined scenarios were the number of hops for 
message delivery in DIMANDS overlay and message delay 
for the same process.  
Two kinds of evaluations were performed. The purpose of 
the first evaluation was to investigate if the performance of 
DIMANDS is affected by the number of CHORD circles or 
the distribution of the IdPs in the overlay. Two different 
overlays were created. In the first structure 2000 nodes 
were equally distributed in 40 geographical regions 
(CHORD circles), thus each circle contained 50 nodes. 
Each node sustained 6 neighbors in its own circle and 6 
neighbors in the others circles. In the second structure the 
2000 nodes were equally distributed in 4 CHORD circles, 
thus each circle contained 500 nodes. Each node sustained 
9 neighbors in its own circle and 2 neighbors in the others 
circles. It must be clarified that in this evaluation, the nodes 
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were distributed totally random not following a specific 
locality optimization algorithm.  
Figures 8 and 9 present the cumulative density function for 
the number of hops and message delay of DIMANDS 
requests. As depicted, the average delay for routing a 
message over the overlay for both structures is about 0,8 - 
0,9 seconds and the average number of hops between 11 to 
12. Based on these results we can accept that the 
performance of DIMANDS is not affected by its structure. 
 

 
Figure 8. Cumulative density function for the number 

of hops. 

 
Figure 9. Cumulative density function for message 

delay. 
The purpose of the second evaluation was to examine 
DIMANDS performance if the distribution of its nodes is 
based on a specific locality algorithm. The selected locality 
algorithm was the Proximity Neighbor Selection (PNS) 
algorithm. In this simulation the overlay was composed by 
4 CHORD circles each one containing 500 nodes.  Figures 
10 and 11 present the cumulative density function for the 

number of hops and message delay for two different 
overlay structures: a locality aware DIMANDS overlay and 
a DIMANDS overlay that its nodes were distributed totally 
random. As depicted, the average number of hops is not 
affected by the locality algorithm, but the average delay for 
routing a message over the overlay decreases from 0.85 to 
0.7 seconds. 

 
Figure 10. Cumulative density function for the number 

of hops. 

 
Figure 11. Cumulative density function for message 

delay. 
We must clarify that the above measurements present the 
worst case scenario and prove that the system’s 
performance can improve with the adaptation of better 
routing algorithms. Furthermore it must be noted that in all 
the above scenarios, the destination node of a generated 
request was randomly selected and could be any node in the 
overlay. In real conditions, the destination nodes of 
DIMANDS requests are expected to reside close to the 
requester due to the fact that DIMANDS architecture is 
organized in geographical areas to ensure that message 

11



exchanging between providers that reside in large distances 
in the actual network is minimized. 

8. CONCLUSION 
In this paper we presented DIMANDS, a global identity 
and trust framework free of any vertical (network layers, 
protocols etc) or horizontal (services, domains etc) 
limitations that spans across different domains and 
federations, and binds together different types of identities 
of the same user without compromising his privacy. We 
illustrated the role that DIMANDS can play to support 
innovative cross domain and cross federation user services. 
Through a detailed security and trust analysis we described 
how DIMANDS ensures absolute security and privacy to 
all its components and provides the means for dynamic 
trust establishment across different administrative borders. 
Finally we evaluated our system by means of simulation to 
present that its performance is acceptable even in the worst 
possible scenarios.  
Moving towards the Future Internet the identity 
management problem will become more complex and will 
have to deal with not only with the management of users’ 
identities but also all with the identifiers of interconnected 
devices, machines and software components (Internet of 
Things). Future work will try to extend DIMANDS to 
address this important issue and provide a large scale 
framework which deals with the identity management 
problem as a whole. 
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ABSTRACT
While confidentiality of telephone conversation contents has
recently received considerable attention in Internet telephony
(VoIP), the protection of the caller–callee relation is largely
unexplored. From the privacy research community we learn
that this relation can be protected by Chaum’s mixes. In
early proposals of mix networks, however, it was reasonable
to assume that high latency is acceptable. While the general
idea has been deployed for low latency networks as well, im-
portant security measures had to be dropped for achieving
performance. The result is protection against a consider-
ably weaker adversary model in exchange for usability. In
this paper, we show that it is unjustified to conclude that
low latency network applications imply weak protection. On
the contrary, we argue that current Internet telephony proto-
cols provide a range of promising preconditions for adopting
anonymity services with security properties similar to those
of high latency anonymity networks. We expect that imple-
menting anonymity services becomes a major challenge as
customer privacy becomes one of the most important sec-
ondary goals in any (commercial) Internet application.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; K.6.5 [Management of Comput-
ing and Information Systems]: Security and Protection

General Terms
Security

Keywords
VoIP, Mixes, Anonymity, Traffic analysis attacks

1. INTRODUCTION
Addressing on the network layer in the Internet is by no

means secure: neither is it a simple task to validate a given
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address, since forking is easy, nor is it simple to hide ad-
dresses reliably from network intermediaries, and thus es-
tablish anonymity, since explicit addresses are an inherent
part of most Internet protocols. Chaum’s mixes [1] are de-
signed to build an anonymity layer upon such protocols. A
mix is a forwarding proxy which obfuscates addresses, send-
ing and receiving time, and contents of network messages.
A typical way of obfuscating the sending or receiving time
in high latency applications, such as e-mail (Mixminion [2]),
is to wait for several messages arriving at the mix before
forwarding them all together in random order. However,
in low latency protection services (e.g., AN.ON [3], Tor [4],
and ISDN-Mixes [5]), delaying messages is no option. Even
for web mixes, practical experience shows that the packet
delay needs to be close to zero. The smaller the delay of
a packet may be, however, the smaller is the set of pack-
ets that can be sent out in random order or lexicographical
order for practical reason, and thus the higher becomes the
probability of successful traffic analysis attacks. A common
proposal to avoid this kind of attacks is to generate artificial
cover traffic in the network, if otherwise the mix does not
receive enough packets.

Voice over IP (VoIP) applications are natural competi-
tors of classic public switched telephone network (PSTN),
but fall short when it comes to preserving the anonymity
of users on the network level, since explicit addresses are
used. At first sight, it seems hard to establish an anonymity
layer between network layer and existing VoIP protocols due
to their bandwidth demands and the low latency which is
allowed. A few assumptions about the mode of operation,
however, allow to create a view on VoIP protocols which is
quite appealing for establishing the anonymity layer. These
assumptions are (1) VoIP media flow is sent in constant rate,
(2) it is sent continuously, i. e., silence suppression is not ap-
plied, and (3) each media packet is with the equal size, i. e.,
a fixed bit rate codec is employed.

In this paper, we perform an analysis of the passive traffic
analysis attacks on VoIP systems, considering both, signal-
ing flow and media flow, and moreover demonstrate how to
eliminate or equalize the flow patterns to make the attacks
more difficult.

We deem privacy concerns as one of the major hurdles in
the large-scale adoption of VoIP technology. Not only the
telecommunication legislation in many countries declares the
telecommunication contents and the caller-callee relation as
sensitive data in general, but also companies may specifi-
cally worry about business secrets such as confidential nego-
tiations, they may allow anonymous whistle-blowing within
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Figure 1: A simple VoIP architecture

the company to improve working conditions as well, and sci-
entists may provide anonymity to those who participate in
their surveys.
The remainder of this paper is organized as follows: Sec-

tion 2 provides the system model, notions, and a calling
scenario; Section 3 describes our adversary model and at-
tacking methods. Prevention methods are discussed in Sec-
tion 4; Section 5 addresses open problems and future work;
Section 6 presents a overview of related work; in Section 7,
we summarize our conclusions.

2. MODELS

2.1 Preliminaries: a VoIP model
Typically two types of flows are involved to realize a VoIP

call: signaling flows for call setup and termination (e.g., the
Session Initiation Protocol (SIP) [6]) and media flows for
coded voice packets transmission (e.g., the Realtime Trans-
port Protocol (RTP) [7]). In this paper, we focus on the
Client/Server based VoIP model, which consists of a VoIP
Service Provider (VSP) and a set of clients. The VSP mainly
provides two functional components: (1) a Signaling Func-
tion (SF) to authenticate user, locate user, forward signaling
messages and manage billing records; (2) a Media Function
(MF) to relay media flows between users. The motivation of
employing a MF is to help media flows to traverse Network
Address Translation (NAT) [8] devices since users may not
own a valid public IP address. To solve the problem, the
SF first needs to contact with the MF using a middlebox
management protocol (e.g., MIDCOM [9] or TURN [10])
to reserve corresponding resources (e.g., ports) on the MF.
Secondly, the SF replaces the original peer transport address
(TA)1 information appeared in signaling messages with the
reserved TA of the MF. In this way, the users do not need to
setup a direct bidirectional media flow with each other. In-
stead, the media flows are relayed by the MF as a rendezvous
point.
Given the VoIP architecture illustrated in Figure 1, there

are n users registered on the VSP: Each user may setup
calls with another one. The channels between users and
the VSP are insecure and can be intercepted by adversaries.
However, we assume that each user shares a secrte key with
the VSP. The channels can be encrypted by using the shared
key between the user and the VSP. It is flexible for users to

1A transport address is a pair of IP address and port

select user-agents by themselves. Two properties of a user-
agent are worth being mentioned:

• Silence suppression: Some VoIP user-agents allow dis-
continuous voice packets transmission [11], which is a
capability of user-agents to stop sending media pack-
ets during silent periods of its owner. In this circum-
stance, bandwidth can be significantly saved. If silence
suppression is not applied, the media packets are gen-
erated constantly with a fixed time interval (e.g., 20
ms).

• Encoding bit rates: Two types of encoding bit rates
can be distinguished: Fixed Bit Rate (FBR) and Vari-
able Bit Rate (VBR). With FBR codec (e.g., G.711
[12]), the generated media packets are always the same
size. On the other hand, VBR codec (e.g., Speex [13])
means that the encoding bit rate varies according to
the voice. In this way, user agents produce media pack-
ets with different sizes.

2.2 A calling scenario
Let us take the scenario illustrated in Figure 22. The user,

Alice (denoted as a ∈ U), launches an INVITE request tar-
geting to Bob (denoted as b ∈ U). User a first initializes the
request to the SF. The SF processes this request and then
forwards it to b. It takes a while for b to decide whether this
request should be accepted and the time period for decid-
ing is highly indeterministic. Then we assume that b sends
a positive response to SF to accept the call. The response
is relayed by SF). These signaling messages compose one
signaling transaction.

After a acknowledges the request by an ACK message, a
will start the conversation by continuously sending media
packets. The packets are relayed by MF to b. Meanwhile,
b continuously originates media packets. All these media
packets compose a media session.

Finally, a sends termination signaling request to tear down
the media flows. This request and the response to this re-
quest is relayed by SF. User a and b stop sending media
packets respectively. The signaling messages for terminat-
ing the call compose another signaling transaction and all
the signaling messages in this scenario forms a signaling di-
alog.

We assume that each user shares a secret key with the
VSP. All the signaling and media packets in this scenario
are encrypted by using the keys. Therefore, when the SF
or the MF receives a signaling or a media packet, it will de-
crypt the packet at first and then encrypt it again using the
shared keys with the sender and recipient respectively. The
following sections will analyze attacks and attack prevention
based on this scenario.

3. TRAFFIC ANALYSIS ATTACKS

3.1 Adversary model
We first assume that Alice trusts the VSP and her contact,

Bob. In this way, the calling records of their conversations
are legitimate to be known by them. We consider a global
adversary model : the intermediaries (e.g., routers) in the

2To simplify, we do not consider optional signaling and
RTCP traffic in this paper.
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Figure 2: A calling scenario

network are potential adversaries, who form a grand coali-
tion to wiretap the flow information over any links in the
network during a period of time. However, we assume that
it is computational impossible for the attackers to decipher
any flow. Thus, the attackers are unable to read the plain
text of their intercepted packets. Nevertheless, the attackers
do not care about the content of conversations, but only aim
to profile the calling records (caller-callee relation). What
the attackers can observe are header, payload, size and ar-
rival time of packets in any flow. Furthermore, the attackers
have an experimental knowledge of the packet loss and delay
on each channel. Readers please note that this paper only
focus on passive traffic analysis attacks, which means that
the attackers do not modify, drop and delay any packet in
any flow.

3.2 Basic notions
Let U to be the set of the n users: U = {u1, u2, ..., un}

and we use m and s to indicate the MF and the SF re-
spectively. We use "→ to denote “who called whom”. For
example, If u1 called un, then we write u1 "→ un. Moreover,
a vector −→xy (x, y ∈ U ∪ {m, s};x &= y) represents the flow
from x to y for a given time period T . The flow consists
of a set of IP packets or no packets at all, formalized by
−→xy = (〈−→xy〉1, ..., 〈−→xy〉|−→xy|), |−→xy| denotes the number of pack-
ets in −→xy. Then |−→xy| = 0 means that no packet sent from x
to y during T . Otherwise, a set (〈−→xy〉1, ..., 〈−→xy〉|−→xy|) can rep-
resent −→xy. All the 〈−→xy〉i, (1 ≤ i ≤ |−→xy| ∧ i ∈ Z) are the data
packets contained in −→xy which are numbered in the order in
which they were sent.
Each packet has its own properties (e.g., size, arrival time,

etc). For a given packet 〈−→xy〉i, let S(〈−→xy〉i) to be the size of
〈−→xy〉i; And T (〈−→xy〉i) to be the arrival time of 〈−→xy〉i.
Moreover, each channel also has its own features (e.g.,

packet loss, transmission delay). We use δxyz to denote the
maximal packet loss rate and dxyz±εxyz to denote the trans-
mitting delay over the channel from x to z relayed by y.
We further define:

• Given two flows −→xy and −→yz, we define that it is a

packet amount match (
A
≡) between the two flows

if and only if the two flows have the similar amount of
packets.

(|−→xy|− |−→yz| ≤ δxyz · |−→xy|)

⇐⇒ (−→xy
A
≡ −→yz);

(1)

• Given two flows −→xy and −→yz, we define that it is a size

match (
S
≡) between the two flows if and only if: (1)

−→xy
A
≡ −→yz, and (2) a subvector −→xy′ of −→xy can be found:

The packets in −→xy′ and −→yz with the same sequence
number have the same payload.

(−→xy
A
≡ −→yz) ∧ (∃−→xy′ : ∀i : S(〈−→xy′〉i) = S(〈−→yz〉i))

⇐⇒ (−→xy
S
≡ −→yz);

(2)

• Given two flows −→xy and −→yz, we define that it is a rel-

ative time match (
T
≡) between the two flows if and

only if: (1) −→xy
A
≡ −→yz; and (2) a subvector −→xy′ of −→xy can

be found: The packets in −→xy′ and −→yz with the same
sequence number have the arrival time difference with
in the predicted transmitting delay dxyz ± εxyz.

(−→xy
A
≡ −→yz)∧

(∃−→xy′ : ∀i : |T (〈−→yz〉i)− T (〈−→xy′〉i)− dxyz| ≤ εxyz)

⇐⇒ (−→xy
T
≡ −→yz);

(3)

3.3 Attack methods
Some people believe that their calling records are with-

held from intermediaries as long as both the signaling and
the media flows are encrypted as well as relayed by the VSP
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[14]. However, it is not the case if we apply the global adver-
sary model. If we take the calling scenario in Figure 2 as an
example, the calling record can be successfully detected by
the attackers as long as they can link any two relayed flows

(−→as with
−→
sb,

−→
bs with −→sa, −→am with

−→
mb, or

−→
bm with −→ma) in time

window of a call. The attackers just need to observe some
linkable patterns of the flows on both sides of the VSP with-
out deciphering any packet. This kind of attacks is named
as passive traffic analysis attack.
The traffic analysis attacks take advantage of the linka-

bility of the two relayed flows (e.g., −→as and
−→
sb). As defined

by Pfitzmann et al., [15] linkability of two flows from an at-
tacker’s perspective means that the attacker can sufficiently
distinguish whether the two flows are related or not. Actu-
ally, within the VoIP model, some patterns of the relayed
flows are highly deterministic. Here we address these link-
able features:
1. Non-empty pattern: If a called b, there must be a

sequence of signaling request packets sent from a to s and
from s to b. Also some response packets from b to s and s to a
should be originated. However, it is uncertain whether there
are media packets generated or not, depending on whether
such a request is accepted or rejected by b. This pattern is
formalized as

(a "→ b) =⇒ (|−→as| > 0) ∧ (|
−→
sb| > 0) ∧ (|

−→
bs| > 0) ∧ (|−→sa| > 0)

∧
®
(|−→am| > 0) ∧ (|

−→
mb| > 0) ∧ (|

−→
bm| > 0) ∧ (|−→ma| > 0), accept

(|−→am| = 0) ∧ (|
−→
mb| = 0) ∧ (|

−→
bm| = 0) ∧ (|−→ma| = 0), reject;

(4)

We assume that attackers have already known that a in-
volved in a conversation during a time T . Considering Equa-
tion 4, the attackers know that the contact of a must be
bound to a set Xa ⊆ U/{a} which is formalized as:

∀x∈Xa : (|−→sx| > 0) ∧ (|−→xs| > 0)∧
ß
(|−→mx| > 0) ∧ (|−→xm| > 0), accept

(|−→mx| = 0) ∧ (|−→xm| = 0), reject;

(5)

The calling record can be confirmed by the attackers if
Xa = {b} and Xb = {a}. For example, Figure 1 gives
a scenario in which only two users (u1 and un) generates
signaling and media packets. Thus, it is easy for attackers to
find out that the conversation is between u1 and un because
Xu1 = {un} and Xun = {u1}.
2. Packets amount pattern: If a called b, the −→as and

the
−→
sb should be packet amount match. This rule is also

applied to
−→
bs with −→sa, −→am with

−→
mb, and

−→
bm with −→ma. This

pattern is formalized as

(a "→ b) =⇒ (−→as
A
≡

−→
sb) ∧ (

−→
bs

A
≡ −→sa)∧

(−→am
A
≡

−→
mb) ∧ (

−→
bm

A
≡ −→ma)

(6)

The attackers have already known the |−→as|, |−→sa|, |−→am| and
|−→ma| since they can intercept the flows over the link between
a and the VSP. Moreover the attackers know the packet loss
rate over the channels. Using Equation 6, the attackers know
that the contact of a must be bound to a set Ya ⊆ U/{a}
which is formalized as:

∀y∈Ya : (−→as
A
≡ −→sy) ∧ (−→ys

A
≡ −→sa)∧

(−→am
A
≡ −→my) ∧ (−→ym

A
≡ −→ma)

(7)

3. Packets size pattern: The signaling packets are
usually modified by the SF (e.g., to insert or remove packet
header fields), they are immunized to the packet size pattern.
However, the packets size of relayed media flows should be
matched if MF only decrypts and encrypts received packets
without changing them. This pattern is formalized as

(a "→ b) =⇒ (−→am
S
≡

−→
mb) ∧ (

−→
bm

S
≡ −→ma) (8)

The attackers have already intercepted the packet sizes of
−→am and −→ma. Taking Equation 8 into account, the attackers
know that the contact of a must be bound to a set Va ⊆ U/
{a} which is formalized as:

∀v∈Va : (−→am
S
≡ −→mv) ∧ (−→vm

S
≡ −→ma) (9)

4. Packets arrival time pattern: The packets arrival
time of relayed flows are also highly deterministic. As men-

tioned above, −→as with
−→
sb,

−→
bs with −→sa, −→am with

−→
mb, and

−→
bm

with −→ma should be relative time match.

(a "→ b) =⇒ (−→as
T
≡
−→
sb) ∧ (

−→
bs

T
≡−→sa) ∧ (−→am

T
≡
−→
mb) ∧ (

−→
bm

T
≡−→ma)

(10)

The attackers have already intercepted the packets arrival
time of −→as, −→sa, −→am and −→ma. Considering Equation 10, the
contact of a must be bound to a set Wa ⊆ U/{a} which is
formalized as:

∀w∈Wa : (−→as
T
≡−→sw) ∧ (−→ws

T
≡−→sa) ∧ (−→am

T
≡−−→mw) ∧ (−−→wm

T
≡−→ma)

(11)

Let us say that a and b had a conversation using VoIP.
Taking above patterns (Equation 5, 7, 9 and 11) into ac-
count, the contact of the user a must be bound in such
the set Ca = Xa ∩ Ya ∩ Va ∩ Wa from the attackers’ view.
Similarly, the contact of b must be bound in such the set
Cb = Xb ∩ Yb ∩ Vb ∩ Wb. Therefore, the success of passive
traffic analysis attacks totally depends upon the sizes of Ca

and Cb. We define two cases as follows:

• The worst anonymity case: The attackers can confirm
that a called b when (Ca = {b}) ∧ (Cb = {a}), which is
defined as the worst case.

• The best anonymity case: The contact of a can be any
one in the U except a and the contact of b can be any
one in the U except b when (|Ca| = n − 1) ∧ (|Cb| =
n− 1), which means that it is insufficient for attackers
to distinguish. This case is defined as the best case.

Unfortunately, however, there are a variety of user-agents
are available in reality. Some user-agents support silence
suppression or VBR codec, which makes the flow patterns
highly depending on specified scenarios. Moreover, each
VoIP user has unique characteristics and preferences for
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making calls. And all the calls can be established and ter-
minated at arbitrary time independent from others. As a
result, the sizes of Ca and Cb usually is rather small and
leading to the worst case.

4. PROTECTION METHODS
While the attackers aim to minimize the size of Ca and

Cb, the goal of the protection is to increase them so that
it is difficult for attackers to locate who is the real con-
tact. Countermeasures against traffic analysis are based on
the mixes concept [1], in which one or several mix nodes
serve to relay packets and meanwhile hide the relationship
between incoming and outgoing packets. A mix can apply
a variety of techniques including broadcasting, multi-layer
cryptography, reordering packets, delaying and forwarding
packets as a batch, generating additional cover traffic and
replay determination schemes to reduce the linkable pat-
terns of the flows. Many anonymity services based mixes
concept are existing in the Internet. For example, AN.ON
[3] mixes HTTP flows from and to its web browsing users.
However, most of these anonymity services are designed for
web surfing, FTP, or Email applications. Nevertheless VoIP
has different characteristics to these applications:

• Flow types: To achieve a VoIP call, a signaling com-
munication and a media communication must be es-
tablished. There are different flow patterns for these
two types of communications.

• Performance: VoIP users usually have different per-
formance requirements on signaling flows and media
flows. For example, the end-to-end latency for trans-
mitting media packets over 350 ms can interrupt the
conversation [16]. The latency requirement for signal-
ing flows are lower and depends on how long a user
would like to wait for establishing a call.

• Conversation mode: VoIP users mostly build conver-
sation following a 1:1 mode. That is, one user can only
call or can be called by another user in a given time.3

• Packets rate: VoIP media flows can be sent in constant
rate continuously when silence suppression is not ap-
plied.

• Packets size: Each media packet can be the equal size
when a fixed bit rate codec is employed.

Taking these characteristics into account, the anonymity
solutions for other applications are difficult to be reused for
VoIP. A specific scheme should be designed combined with
the characteristics of VoIP. Moreover, we consider to apply
some mixes techniques on the SF and the MF by rewriting
the processing logics on the SF, the MF and user-agents.
The logics can be rewritten for two considerations:

• Generalizing patterns: We apply policies on the SF
and the MF to enforce that all their served flows must
follow predefined patterns. Thus, the patterns of the
flows are equalized.

3We do not consider to address VoIP conference mode in
this paper.

Figure 3: A layered model of VoIP

• Eliminating patterns: Another alternative is to rewrite
the calling processing rules to break the original deter-
ministic patterns. In this way, the linkable patterns
are not valid anymore.

4.1 Anonymity preference
Technically, VoIP can be considered as a layered model

illustrated in Figure 3. In this model, the overlay represents
the higher logic based on the underlay. For example, a me-
dia session contains bidirectional flows of media packets. A
signaling transaction consists of a SIP request packet and
a response packet (e.g., INVITE and 200 OK). A signaling
dialog includes a “starting” transaction and a “terminating”
transaction. A call is composed of a signaling dialog and a
media session. Finally, calling preference is the highest logic
indicating the frequency of a callee for a given caller.

Anonymity preference can be enforced on any layer in this
model. However, a low-layer protection does not mean the
high-layer is well protected. For example, the call anonymity
is not necessarily achieved even if the media session anonymity
is protected since attackers might find clues from the signal-
ing flows. Thus, it is more difficult to protect the anonymity
on the higher layer. In this paper, we focus on the anonymity
protection on the call layer, which aims to withhold the
caller/callee relationship of a single call. Our solution cannot
guarantee the protect calling preference. For example, the
anonymity protection might be broken if Alice calls Bob for
many times. The detail on this issue is discussed in Section 5
and we leave the calling preference protection counteracting
long term intersection attacks for future work.

4.2 Methods
Taking the two approaches (generalizing patterns and elim-

inating patterns) into account, we discuss countermeasure
methods.

Enforcing to use the same FBR codec: We force all
user-agents to be applied the same FBR codec when users
search for traffic analysis resistance. In this way, the media
packets generated from user-agents always have the same
size, which means that the packet size pattern is equalized
for any media flow.

Dropping media packets generated in silence pe-
riods: This method is based on the “defensive dropping”
concept [17]. We name the media packets generated in si-
lence periods as silent packets. In this scheme, the user-
agents do not apply silence suppression but Voice Activity
Detection (VAD): The user-agents generate media packets
to the MF in a constant rate whatever they detect silence
or speech. However, the user-agent can instruct the MF to
drop some randomly selected silent packets according to a
dropping rate. This can be easily achieved by putting one
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Figure 4: Dropping media packets generated in si-
lence periods

Figure 5: Enforcing global dummy traffic to cover
media flows

bit (’0’ for keeping and ’1’ for dropping) inside the encryp-
tion layer of each media packet. This method is helpful to
eliminates packets amount pattern on media flows. More-
over, dropping these silent packets introduces less impact on
the performance of a VoIP conversation. Figure 4 depicts
this method. The dots in the figure denote media packets.
From the figure, we can see that −−→u1m and −−→mu1 are with dif-
ferent amount of packets as silent packets are dropped by
the MF. Nevertheless, the dropping rate must be carefully
selected according to our previous work in [18]. Especially,
the attackers can find out the silence periods and speech
periods of both users by observing the “gaps” in −−→mu1 and
−−→mun if all the silence packets are dropped by the MF. In
this way, attackers can therefore match −−→mu1 and −−→mun using
human conversation pattern “When one speaks, the other
listens [19]”.
Enforcing global dummy traffic to cover media flows:

The method of enforcing global dummy traffic in VoIP has
been discussed in [20]. Dummy traffic is the traffic consist-
ing of encrypted garbage packets. Since all packets are en-
crypted, the attackers cannot distinguish a captured packet
is a media packet or a garbage one. There are two options
for users in the scheme proposed in [20]:

• The users constantly send dummy media packets to
the MF, meanwhile the MF constantly sends all users
with dummy media packets. Both the MF and the
users decrypt received packets, and drop them if they
are recognized as garbage.

Figure 6: An example of batch method with k = 2

• When a user a wants to have a conversation with user
b, a replaces the encrypted garbage packets with me-
dia packets. The MF then decrypts the packets from
a and recognizes that they are not garbage packets,
but media packets targeting to b. Therefore, the MF
forwards these media packets to b instead of garbage
packets. After decrypting them, b accepts these pack-
ets since they are not garbage packets. And b sends
media packets relayed by the MF following the same
rule.

The idea behind this method is that all idle users pretend
communicating to cover the users who are really making
calls. In this way, the non-empty pattern for media flows is
equalized. However, we need to mention that global dummy
traffic can introduce high bandwidth overhead. Figure 5
illustrates this method.

Enforcing batch scheme: This scheme does not rely on
dummy traffic to equalize the non-empty pattern, but aims
to process k calls as a batch with the same starting and ter-
minating time. The constant k is a quantitative requirement
of anonymity and can be arbitrarily set according to specific
contexts. The detailed operations are as follows:

1. The SF waits for the calling requests (INVITE) until
k requests are received.

2. The SF takes these k requests as a batch (e.g., record-
ing Call-IDs of all k requests) and then flushes the
batch at once (forwarding all requests).

3. The SF waits for the responses to the k requests until
all of them are received.

4. The SF flushes the responses, and waits for the termi-
nating requests (BYE) for the batch until a timeout
tout occurs.

5. If all terminating requests for the batch have been re-
ceived and the timeout does not occur, the SF flushes
all the terminating requests.

6. Otherwise, if the timeout occurs and not all terminat-
ing requests for the batch have yet been received, the
SF generates terminating requests to force terminating
all calls within the batch.

7. Similarly, the SF batches all the terminating responses.

20



An example of this method is illustrated in Figure 6, with
k = 2. The signaling flows are numbered in chronological
order. Let us say that u1 called u2 and un called u3. User
u1 first initialize a calling request to the SF. However, the
SF does not forward it immediately, instead, the SF waited
until the second calling request is received. Then, the SF
takes these two requests as a batch and flushes them to u2

and u3 respectively. The batch scheme is applied to the
responses, too. With this scheme applied, the attackers at
most know that u1, u2, u3, and un are involved in 2 conver-
sations. However, they cannot distinguish who called whom
in detail, because u1 might call u2 or u3, and it is the same
for un. The complexity increases with the k. The major side
effect of this method is that the time of establishing and ter-
minating a call is beyond the user’s control and depending
other users (whether there are other users join the batch
or not). Nevertheless, this method is more flexible than the
global dummy traffic method since the requirement k is tun-
able.

4.3 An example solution
We will give an example solution based on the above mixes

methods. Our solution is not designed to achieve the best
anonymity case since the cost to achieve it is rather high
[20]. Instead it aims to maintain (|Ca| = k)∨ (|Cb| = k) with
1 ≤ k ≤ m. We assume that each user shares a secrete key
kui with the VSP, which can be used both by the SF and
the MF.
User-agents behavior: The user-agents need to apply

a pre-defined FBR codec with VAD. The user-agents should
send signaling packets to the SF over encrypted channels
using ksui . The user-agents should embed a flag in each
media packet to inform the MF to drop (encoded ’1’) or for-
ward (encoded ’0’) it. Only silence packets are legitimate
to be dropped and they are selected for dropping by a ran-
dom function. The media packets should be protected with
a layer encryption using kmui . Furthermore, if a calling
request is rejected, the user-agent of the caller is required
to generate dummy media packets with the same standard
targeting to itself relayed by the MF until it receives a ter-
minating request from the SF. The operations on making a
call by the user-agents is shown in Algorithm 1.
The MF behavior: The MF need to decrypt the re-

ceived media packets. From embedded flag, the MF knows
whether this packet should be dropped or forwarded. The
operations on the MF is shown in Algorithm 2
The SF behavior: The SF process the signaling mes-

sages mainly based on the batch method. The calling pro-
cessing logic on SF is listed in Algorithm 3. Let us say each
user and the SF have built a encrypted channel using ksui ,
thus we do not repeat stating the cryptographic operations
in Algorithm 3.

5. OPEN ISSUES
Here, we briefly summarize some open problems which are

important for the future research on VoIP calling anonymity.
Performance: Countermeasures to traffic analysis at-

tacks are usually high cost. On the other hand, there is no
doubt that performance is one of the most critical aspects
for VoIP applications if we consider the natural of voice com-
munication. As said, the SF needs to delay k − 1 requests
until the kth request is received for counteract against traf-
fic analysis. Delaying signaling for a period of time will not

Algorithm 1 The operations on making a call by the user-
agents

Encrypts the calling request using ksui ;
Send it to the SF;
Wait for the response;
if Get a calling response then

Decrypts it using ksui ;
if response == OK then

Send a encrypted ACK;
repeat

Send a media packet;
if It is a silence packet then

Decide whether this packet should be dropped;
if Decide to drop then

Mark it’s flag as 1;
end if

end if
Encrypt media packets using kmui ;
Send and receive media packet;
Decrypt media packets using kmui ;
if Want to tear down the call then

Send terminating request;
Break;

end if
until Calling terminating received

else if response == rejected then
repeat

Generate randomized a dummy packet;
Decide whether this packet should be dropped;
if Decide to drop then

Mark it’s flag as 1;
end if
Encrypt dummy packets using kui ;
Send and receive dummy packets;

until Calling terminating received
end if

end if

Algorithm 2 The operations on the MF

Receive a media packet;
Deciphering it using kmui ;
if flag is 1 then

Drop this packet;
else

Encrypt this packet using kmuj ; {uj is the destination
of the packet.}
Forward it;

end if
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Algorithm 3 The operations on the SF
repeat

Get 1 calling request;
until Received k calling requests;
Take these k requests as a batch;
flush them;
Wait for calling responses for the batch;
if All the k responses are received then

Reserve resources on the MF;
flush the responses;

end if
Wait for terminating requests for the batch;
if All terminating requests for the batch received then

Free the resources on the MF;
flush the terminating requests;

else if the maximal calling duration is reached then
Free the resources on the MF;
Generate terminating requests;
flush the terminating requests;

end if
Wait for final responses for the batch;
if All responses received then

flush them;
end if

interrupt the whole conversation: Users just need to wait
for a while to setup or terminate the call. It is reason-
able to tradeoff if user want to achieve privacy. However,
different to signaling flows, a heavy end-to-end latency on
media flows can interrupt the whole conversation. Accord-
ing to [16], the one-way latency on media flows under 150
ms is considered highly desirable. Our solution requires the
MF to synchronize and re-encrypt its relayed media flows.
These additional operations certainly introduce overhead on
end-to-end latency of media flows. In future work, we will
evaluate the performance of a prototype implementation.
Active traffic analysis: A comprehensive anonymity

solution should also take the active traffic analysis attacks
into account. In this context, the intermediaries not only can
wiretap their transmitted flows, but also can modify, delay,
drop any packets in the network. The idea behind the active
traffic analysis attacks is to introduce specific linkable pat-
terns for correlation. Sophisticated detection and prevention
schemes need to be designed to defend against active traffic
analysis.
Replay attacks: The MF does not read and check the

content of its relayed media packets, but only decrypts, syn-
chronizes and forwards them. Attackers can take advantage
of this by replaying intercepted media packets several times
later. Thus, attackers can identify who is the recipient of
the packets by the intersection of different batches if the
replayed packets cannot be detected. In future work, we
will use timestamp and timeout scheme to discard replayed
media packets since late-arrival media packets are useless.
Malicious users: In this paper we assume that only the

networking intermediaries are adversaries while all the users
from U are honest and cooperative. However, it is usually
not the case in reality. Malicious users might frequently
setup meaningless calls batched with other users. With the
assistant of malicious users, the intermediaries can easily ex-
clude the malicious users from a given batch. On the other
hand, some users might be nonmalicious but just uncooper-

ative. For example, they do not follow the designed rule to
initialize dummy media packets if their calling requests are
rejected. We will evaluate this threat model in the future
work.

More realistic traffic models: To simplify, we employ
an idealistic model in this paper without considering op-
tional signaling packets, RTCP packets and re-INVITE re-
quest, etc. In future work, we will take these packets into
account to find out how they affect the attacks and preven-
tion solutions.

Long-term intersection attacks: As introduced in Sec-
tion 4.1, our solution in this paper only provides anonymity
for a single call. However, the provided anonymity may be
broken in a long run. For example, Alice participates in sev-
eral calling batches. Let us assume that Alice always calls
Bob in these batches while the other users participating in
these batches have different callees. In this way, it is easy
for attackers to intersect the Ca in different rounds to find
Alice’s real contact, Bob. We will investigate the long-term
intersection attacks in the future.

Lawful interception: Telecommunication providers are
required to support Communications Assistance for Law En-
forcement Act (CALEA) in many countries for national se-
curity and the investigation of serious crime. Lawful inter-
ception means that a law enforcement agency is authorized
to intercept both the conversation content and the calling
records for a particular user. For example, the EU Council
Resolution of 17 January 1995 on the lawful interception of
telecommunications (96/C 329/01) [21] declared the surveil-
lance on telecommunication as a mandatory requirement.
The solution discussed in this paper does not contradict the
requirement of lawful interception since the VSP is still able
to learn everything about the conversations it served. What
the solution prevents is only the unauthorized intermediaries
on the communication channels. Nevertheless, the interface
for lawful interception based on this solution is still needed
to be taken into account.

6. RELATED WORK
Recent work on VoIP privacy protection is mainly focused

on the following fields:
Information hiding on signaling flows: Peterson [22]

and Shen et al. [14] demonstrated a comprehensive sum-
mary of privacy-sensitive message fields in SIP. Some op-
tional headers (e.g., Subject) is not essential for achieving
the intended purpose of the messages and can be removed
by users without any side-effects for privacy purpose. More-
over, non-optional headers (e.g., To, From, Via and Contact)
can be replaced by the VSP or a trusted third party with
randomized values. However, the relationship between the
original values and the random values must be cached on
the VSP or the trusted third party for routing responses.
Karopoulos et al. [23] proposed a framework to separate
caller and callee’s identities based on encryption in multi-
domain environments. The caller encrypts the identities of
the caller and the callee in a SIP message by the keys shared
with the caller’s domain proxy and the callee’s domain proxy
respectively. In this way, no such a single party exists which
can see both the identities of the caller and the callee. Un-
fortunately, even the identity information in signaling and
media flows are well protected, it does not prevent intermedi-
aries from profiling “who called whom” using traffic analysis
attacks.
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Traffic analysis attacks on media flows: Some VoIP
users make calls over commercial relays for anonymity. Wang
et al. [24] demonstrated that such a solution is vulnerable to
active traffic analysis attack: An attacker can embed unique
watermark into the encrypted VoIP flow by slightly delay-
ing of random selected packets. In this way, an attacker
can find out who called whom by encoding and decoding
the watermarks on both side of the relay. Verscheure et
al. [25] proposed a method to reveal calling records by ex-
ploiting the human conversation pattern: When one speaks,
the other usually listens. This “alternate in speaking and
silence” represents a probabilistic rule of VoIP communica-
tion. Taking this into account, the caller and the callee’s
flows are probabilistic linkable if the attackers can detect
the silence period and voice period for a flow. This attack
is mainly against those VoIP systems which support silence
suppression. These two papers are only focused on attacks
and no countermeasure solutions are given.
Information leaking of VBR codec: As introduced in

Section 2, VBR technique allows the codec to change its
bit rate dynamically according to the speech audio. Thus,
the user-agents generate media packets with different sizes if
they apply VBR codec. Wright et al. [26, 27] demonstrated
attacks to identify the spoken language or partial conversa-
tion content of encrypted media packets by using the packet-
length information. Moreover, the packet-length informa-
tion may also enable attackers to recognize the speaker [28].
Solution based on unlinkable identity: Munakata et

al. [29] proposed a user-driven privacy mechanism by in-
troducing Globally Routable User Agent URIs (GRUU)[30]
and Traversal Using Relays around NAT (TURN)[10]. The
users can obtain a SIP URI (temp GRUU) and a IP ad-
dress (IP address of a TURN server) which are unlinkable
to their real identities. The proposed mechanism in [29]
enables VoIP users themselves to achieve anonymity by us-
ing unlinkable identities that are functional yet anonymous.
However, this method does not mitigate traffic analysis as
well: Intermediaries on both side of a TURN server can still
profile the mapping relationship of its relayed flows.
Solution based on MIX concept: Melchor et al. [20]

discussed three MIX techniques for VoIP media flows pro-
viding strong resistance against traffic analysis. The three
MIX techniques are based on dummy traffic, broadcasting
and private information retrieval respectively. They further
evaluated the performance of these techniques using a theo-
retical model. Nevertheless, their techniques are too expen-
sive to be deployed in reality.
Our paper addresses VoIP anonymity using different sys-

tem model and adversary model. We do not focus on the
confidentiality of message content, but consider a global ad-
versary model of passive traffic analysis attacks. We per-
formed a formalized analysis taking both the signaling and
media flows into account.

7. CONCLUSION
VoIP data are usually transmitted over large-scale net-

works with untrusted intermediaries. The intermediaries
can thus wiretap the packets passing by and then easily
find out the calling records (“who called whom”) from the
destination and source fields of the packet-headers. How-
ever, many Voice Service Providers (VSP) relay both the
signaling packets and media packets between users. Thus,
the intermediaries cannot observe the calling records from

packet-headers directly. Instead, passive traffic analysis at-
tacks can be mounted: the intermediaries need to correlate
the flows entering and leaving the VSP using patterns of the
flows. A flow usually shares some unique patterns with the
flow being relayed. In this paper, we proposed a formalized
model to address the patterns (e.g., packet size, payload,
arrival time) for both signaling flows and media flows. The
result shows that the attacks can be easily succeed without
additional security measurements.

There are currently no such a practical solution to miti-
gate passive traffic analysis attacks for VoIP users. Some ex-
isting ideas (e.g., broadcasting flows or generating long-term
dummy flows) are too heavy for VoIP and waste resources.
Our paper discussed countermeasures to eliminate or equal-
ize the flow patterns while taking VoIP context into account.
We also find that it is helpful to defend against traffic analy-
sis attacks by enforcing VoIP configuration parameters (e.g.,
use FBR codec and do not use silence suppression). More-
over, we proposed a example defending solution by integrat-
ing some Mix-based methods into the VSP components.

Our future work will be mainly in two directions: (1) We
are going to investigate the performance issues of the pro-
posed solution, especially on the end-to-end latency of media
flows, and (2) We will address more sophisticated adversary
models including active traffic analysis attacks, malicious
users, etc. We hope that this paper motivates the commu-
nity of researchers in the area of both IP telecommunication
and networking anonymity to work towards practical solu-
tions for VoIP anonymity protection.
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ABSTRACT
VoIP security is a tricky issue in inter-domain open context
where interconnection proxies are reachable from anywhere
on the public Internet and may be the subject of DoS and
SPIT attacks. This paper proposes a secure call establish-
ment protocol designed for this context with a particular
focus on DoS protection. The mechanism performs session
key agreement in the signalling plane and can be integrated
to SIP call establishment. It is based on symmetric cryp-
tography algorithms and implicit transaction identifiers to
protect against DoS attacks. We provide heuristic analy-
sis of various security properties among which privacy and
resistance to off-line passive attacks. The IDDR-CEP pro-
tocol is presented in a three party architecture but can be
adapted to a two party architecture; it may also be adapted
to non-VoIP applications.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General, Security and Protec-
tion

General Terms
Security

Keywords
VoIP, security, inter-domain, DoS-resistant, call establish-
ment, key agreement, authentication, privacy, SPIT, token,
ticket, Kerberos

1. INTRODUCTION
VoIP has become a major technology, both for residential
and professional customers. It enables voice and data inte-
gration along with new services (notification, presence, Web-
Phone, ClickToPhone,...). On the other hand, VoIP raises
new issues amongst which the security of communications
[6], which is the subject of this paper.

∗Also temporally affiliated to Telcom Bretagne, France.

IPTComm 2010, 2-3 August, 2010 Munich, Germany

1.1 Background
Three main architectures can be found in VoIP networks.
First the initial architecture1 which comes from the incum-
bent telco operators and is a flat centralized architecture
based on registrar and proxy servers. Secondly, the P2P
architecture which distributes the registrar and proxy func-
tions over a set of nodes and combines the DHT (Distributed
Hash Table) concepts with usual VoIP protocols as described
in [12]. Finally, theWEB architecture which brings the VoIP
endpoint directly in the client’s WEB browser thus leading
to the WebPhone and ClickToPhone concepts. Among the
various protocols for VoIP, SIP [24] has become the funda-
mental signalling brick in association with SDP for session
description and RTP for conveying the media flows. Fur-
ther in this article, we will use the SIP-INVITE request to
indicate the beginning of the call establishment process.

1.2 Current stakes in VoIP security
Several threats have been pointed out in many studies like
[6], [2], [10], [13] but their impact strongly depends on the
context, especially intra-domain or inter-domain contexts.

In the intra-domain context, VoIP communications remain
confined in the same administrative domain, whatever the
underlying network architecture2. Each user endpoint is au-
thenticated by a unique identifier (ID) and the operator
proxies usually stand in the call signalling path. Because
of these characteristics, specific VoIP risks are limited to
DoS and SPIT (SPam over Ip Telephony). DoS risks come
from the protocols complexity and the need to maintain call
context. SPIT originates from (possibly compromised) soft-
phones thus primarily in VoIP P2P and WEB architectures
but now also in incumbent operator architectures with new
mobile endpoints.

The threats become higher in the inter-domain context where
several of the previous architectures are interconnected; an
exhaustive taxonomy is provided in [17]. However, the risk
level depends on the chosen interconnection approach.

A first approach, noted open model hereafter, assumes that
IP connectivity between endpoints, proxies or domains and
DNS lookup are sufficient to establish multimedia commu-
nications, just like the e-mail model. The first major issue
here is that VoIP identifiers are designed to convey a domain

1In reference to the first ITU-T and IETF VoIP standards.
2However interconnection with PSTN is not precluded.
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part but, as explained in [23], because of the huge hard-
phone installed base and of the PSTN predominance, most
VoIP calls originate from, or terminate in, a PSTN cloud.
Consequently, caller (or callee) identifiers lack the domain
part, so inter-domain calls are tricky to route and vice versa
to verify. Where a public-ENUM-like system3 would solve
this problem, it is foreseen in [23] that such a solution is
unlikely to appear in the public domain. The second major
issue is the accumulation of DoS and SPIT risks over the
interconnection points which is called the ”pinhole problem”
in [23] and is very similar to the e-mail vulnerabilities.

An alternative approach, noted closed model or private fed-
erations hereafter, is based on a contractual agreement be-
tween a set of operators to share a secure interconnection ar-
chitecture. The IMS (IP Multimedia Subsystem) standards
[1] define such an architecture with secure links (IPSec)
between domains and network topology hiding to protect
against DoS attacks towards the interconnection proxies.
The phone number problem is solved by sharing securely
E.164 information between the operators.

Finally, a very recent approach VIPR [23] proposes an hy-
brid model combining VoIP, P2P and PSTN components.
In brief, it relies on PSTN call information to build secure
routing and authentication information which are then used
to place direct VoIP calls.

1.3 Problem statement
It is unlikely that VoIP calls remain confined in intra-domain
context, although it offers the highest security. For inter-
domain calls, the closed model reproduces the PSTN prin-
ciples and is expected to reach comparable security. How-
ever, its architecture is not designed for ”any-to-any” spo-
radic communications between domains (like the e-mail ar-
chitecture). Therefore, we anticipate that this model will
coexist with open model or hybrid model where the security
risks are much higher because VoIP proxys are reachable
from anywhere on the public Internet and also because of
the difficulty to route and verify the E.164 call identifiers.

As explained in section 2, the current solutions available for
open or hybrid model show some limitations. Consequently,
we identify the need for a secure call establishment protocol
for inter-domain context which addresses these issues and
takes into account the VoIP specificities, especially: its real-
time nature and the regulatory constraints4 which may have
a strong impact on deployment [11]. It should also meet the
”usual”security requirements of key establishment protocols:
mutual authentication, session key freshness, access control,
privacy, DoS protection, Perfect Forward Secrecy (PFS) and
anti-replay5. The key freshness requirement is taken in its
broader scope meaning a new session key shall be established
at each new call. The PFS requirement shall apply to both
passive off-line attacks (like password guessing) and compro-
mission attacks where the adversary has obtained the long
term secrets of one or several parties; under these hypoth-
esis the adversary shall still not be able to recover any of
3ENUM stands for E.164 to Uniform Resource Identifiers.
4Especially the capability to disclose session keys when re-
quired by legal procedure.
5The reader is referred to [7] for a more detailed definition
and illustration of theses requirements.

the past session keys. It is assumed that the adversary has
all the required capabilities for protocol interaction (message
interception, tampering, replay, forging or deletion) and may
be also an insider as described in [7].

The remaining of this article is organized as follows: sec-
tion 2 analyses the related work in VoIP secure call estab-
lishment. In section 3, we provide the specifications of the
IDDR-CEP protocol. Section 4 shows some possible imple-
mentation of this protocol in a VoIP context. Finally, section
5 provides the discussion and the conclusions.

2. RELATED WORK
2.1 Authentication and key establishment
As often done in the litterature [7], we associate in this sec-
tion the authentication and key establishment aspects. The
E.164 call identifiers problematic is also implicitely associ-
ated to the authentication phase. We consider mainly au-
thentication between VoIP domains, assuming each domain
is responsible for authenticating its own endpoints.

The first possible solution is the use of TLS (or DTLS or
IPSec) on a hop-by-hop basis with inter-domain authenti-
cation. Once the secure link is established, the session key
can be transported in the SIP-INVITE request by using SDP
specific security parameters [4]. In addition to the analysis
provided in [9], this approach does not solve the E.164 iden-
tifiers problematic and it does not meet the PFS (Perfect
Forward Secrecy) requirement since compromission of a pri-
vate key will expose all the previous session keys. Also, it
is unclear how an inbound proxy facing the public Internet
would behave in case of a DoS attack at the TLS level.

The SIP Identity protocol [22] supports end-to-end authen-
tication of the calling domain by adding a digital signature
in the SIP-INVITE request. Called domain authentication
can be supported in return with the extension defined in
[8]. The overall solution supports neither privacy nor key
establishment (because the SIP-INVITE request is not en-
crypted). Also, as explained in [9], this mechanism seems
vulnerable to DoS attacks if the called domain is flooded
with spoofed requests containing invalid signatures. The
SIP Identity protocol was also proposed in conjunction with
the E.164-RRC (Return Routability Check) mechanism [26]
to perform E.164 caller ID verification. The main idea was
to return a verification request towards the E.164 calling
number with a random token (nonce) to be signed. Un-
fortunately, this verification phase assumes that the E.164
routing problematic has been solved previously.

More recently, the VIPR proposal [23] claims to solve the
phone number routing problem by combining VoIP, P2P and
PSTN technologies. It requires that each domain joins a
global open P2P network and publishes in the DHT the list
of its phone identifiers and at least one of its VoIP proxy.
Once an inter-domain PSTN call is completed, if the called
number can be found in the DHT, the calling domain con-
tacts the called domain and obtains a ”cryptographic call
token” bounded to the specific called number and specific
calling domain, along with SIP routing information to place
direct VoIP calls in the future. While this mechanism offers
an incremental approach, we envision some limitations: the
called endpoint has no guarantee that the calling number
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has not been spoofed, each domain has to store potentially
a large number of tokens and besides all it requires PSTN
endlessly. Actually, each time a token validity has expired
or a new destination is being called, a PSTN verification is
required. Even worse, if a signature key gets compromised,
the process involving PSTN shall be repeated for all the pre-
viously issued tokens. It should be noted that some VIPR
ideas were previously proposed in [20] where authentication
tokens are also inserted by the caller in the SIP-INVITE re-
quests. The constraints (token storage and security) are
almost the same since the tokens have a long-term validity.

Another approach, still in the signalling plane, is MIKEY
[5] which can be integrated into the VoIP SIP call establish-
ment6 and supports three authentication modes: pre-shared
key (PSK), public key (PKI) or Diffie-Hellman (DH) ex-
change. Recently, a new MIKEY mode denoted KMS was
proposed in [14]. It is a ticket-based approach with a trusted
third party, inspired from Kerberos [16], which can also be
integrated into the VoIP call establishment and addresses
the call forking specificity. According to [9], the MIKEY
protocol is subject to DoS attack and we anticipate the same
issue with KMS extension7. Also, except for MIKEY-DH,
the PFS security property is not met since the other modes
use session key transportation.

Specific inter-domain protocols were also proposed for au-
thentication and key exchange. Among them, [27] is a four-
party protocol organized in three tiers, using identity-based
cryptography and secret public keys. While this protocol
provides PFS and resistance against off-line and active at-
tacks, it may not be resistant to DoS attacks since a single
fake message from sender A will generate a total of 6 mes-
sages from both the responder B, the domain server SB and
the domain server SA. Another inter-domain protocol is
proposed in [21]; it is based on an improved proxy ElGamal
encryption scheme which enables two users in two distinct
domains to exchange a cipher text through a proxy server
in each domain. This scheme assumes that a shared inter-
domain key KDM1,DM2 is set up; consequently PFS is not
achieved because if this key is compromised all the previous
exchanges are revealed.

Session key establishment may also be performed in the me-
dia plane with the ZRTP [29] or DTLS-SRTP [15] protocols.
Operating the key exchange in the media plane may conflict
with regulatory requirement of key disclosure and, as ex-
plained in [9], this does not save the need for a security
infrastructure at the signalling plane in most of the cases.

2.2 DoS protection
Several DoS-resistant protocols have been proposed with the
common attempt to limit resources consumption by the re-
sponder at the very first step. For this purpose, a cookie is
often returned by the responder and has to be acknowledged
by the originator. This is done for example in [3] where the
cookie includes the initiator information and the responder’s
current exponential. Although the responder does not com-
mit memory resources at the very first step, it still has to

6It does not require prior establishment of a secure link.
7This is because the receiver has no means to check the
ticket validity prior to contacting the KMS.

return a message to the initiator and compute one exponen-
tiation each time a spoofed initiation message is received.
Even worse, if the adversary acknowledges the cookie, the
responder has to verify a fake public-key signature on the
third message. The same analysis and conclusions hold for
[25] where the responder can still not authenticate the first
initiator message thus exposing him to DoS attack in sub-
sequent messages.

An alternative approach is described in IPACF [28] where
each message conveys an access filter value which is ”trivial”
to check. This filter value is updated at each new frame and
it depends on a shared secret key established between the
server and each client. When the server receives a frame
with a valid filter value, it responds to the client with a new
responder filter value and updates the client filter value for
the next frame; the same process holds for the client. This
mechanism also provides user privacy by sending a pseudo-
ID which is user specific and changes at each frame. How-
ever, it is unclear how the protocol behaves if one (or several)
frames are lost or disordered and whether strictly bidirec-
tional exchange has to be maintained between the server and
each client.

3. PROTOCOL SPECIFICATIONS
3.1 General overview and technical novelty
Starting from the architectural view, and the simplified case,
the protocol runs between entities A and B. Entity A is the
initiator, that is the caller or calling entity in a VoIP con-
text. It may be the user endpoint itself or a proxy acting
on its behalf which is able to authenticate the caller iden-
tity IDA. Entity B is the responder, that is the callee or
the called entity. It may be the user endpoint itself or a
proxy acting on its behalf which is able to authenticate the
callee identity IDB . Entities A and B share a secret from
which they can perform secure transactions. Since installing
shared secrets between each couple of entities is not scalable,
an intermediary server S is involved in the general case. En-
tity S is responsible for authenticating A and B and takes
part in each transaction from A to B, provided it receives
a valid transaction request from A. This means that S is
online and has shared-secrets KAS and KSB with respec-
tively entities A and B. A protocol transaction is defined
as the set of IDDR-CEP messages leading to the receipt by
B of the Authenticated Message (AM) related to the origi-
nal message (MES) held by A. Finally, S is responsible for
performing phone number routing and verification between
domains when necessary. This design choice comes from
the previous statements that phone number authentication
always requires a trusted third party; in VIPR [23] this is ex-
plicitly the PSTN network whereas with e164-RRC [26] this
is SIP routing and thus implicitly some kind of underlying
PSTN routing.

This architectural setting is similar to Kerberos, but the pro-
tocol is different and it brings several properties that Ker-
beros is lacking: PFS is achieved even if KAS and KSB are
compromised, the protocol is DoS resistant and the size of
the final message from A to B is not expanded significantly.
This last property is achieved because no key transporta-
tion is used and consequently the UDP transport can be
preserved. As detailed in section 4, this three party archi-
tecture is quite flexible because entities A and B can be
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from different domains or from the same domain; the roam-
ing situation where entity A or B is in a visited domain is
also supported. Finally, entity S may be located in a third
domain or in the calling domain or in the called domain. The
rest of the description keeps the general three entities case
but it can be easily adapted to the simplified two entities
case by assuming A = S.

There are two ways to integrate this protocol with VoIP.
The first one is when the (final) IDDR-CEP Authenticated
Message (AM) is a SIP-INVITE request conveying the secu-
rity information. This ”on-top” approach is illustrated in all
the implementation examples given in section 4. The sec-
ond way is to consider IDDR-CEP as a key establishment
protocol in itself. In that case, the Authenticated Message
(AM) is the first (and only) message required from A to B
for authentication and key agreement. This alternative ap-
proach may be used to set-up a secure link for exchanging
VoIP trafic; it is not further described in this paper.

The DoS resistant property is achieved mainly by using sym-
metric cryptographic algorithms (for both entities authenti-
cation and key agreement) and by inserting an identification
value TRIDN in each AMmessage. This identification value
(also called token) serves for filtering purposes on the respon-
der side (B entity). It can be checked straightaway by B
entity by comparing the received value to the pre-computed
(expected) value. Consequently, any AM message with in-
valid TRIDN value is immediately discarded and also, since
the filter value changes at each transaction, the responder
is protected from replay attacks. The B entity is also pro-
tected from blind attacks because it is not engaged in any
processing (cryptographic computation, context handling or
message generation) before a valid TRIDN value is detected.
This contrasts with protocols like SIP Identity [22], Kerberos
[16] or MIKEY [5] where the responder has to perform at
least one cryptographic operation before further processing
of the message.

From this perspective, IDDR-CEP follows the same filter-
ing principle as the IPACF protocol [28] and extends its
usability from the access to the inter-domain area. How-
ever, the TRIDN value also serves as a transaction identi-
fier among a possible set of transactions (called a transac-
tion window) thus achieving two properties which seem to
be lacking in IPACF: the handling of transactions loss or dis-
ordering. More precisely, the TRIDN value is the result of a
one-way cryptographic function which depends on the cur-
rent transaction index N maintained by the responder. The
value of N is kept secret and only its public image TRIDN

is sent as a reference to the current transaction index.

Finally, the DoS protection is increased by the structure of
the protocol exchange. Unlike KMS [14] where B has to
contact the trusted third-party (S) for checking each mes-
sage it received from A and for obtaining the session key,
in IDDR-CEP the responder B can retreive all the crypto-
graphic material from the single message sent by A. More
precisely, the session key KAB,N between A and B is es-
tablished with a key agreement scheme: it is pre-computed
by B as a function of the current transaction index N and
therefore it is uniquely identified from the received TRIDN

value. This approach contrasts with several protocols like

TLS, Kerberos, MIKEY or KMS where the (encrypted) ses-
sion key is provided to the responder by the initiator or by
a trusted third party. The first benefit is that the final AM
message sent to B is much shorter. Moreover, this removes
the risk of off-line passive attacks since no encrypted key is
transported to B.

As a summary, the IDDR-CEP approach improves the prop-
erties of both Kerberos and IPACF protocols by adding re-
spectively the DoS protection, the PFS property and the
support for transaction loss or disordering. Other security
properties are achieved as explained at the end of this sec-
tion.

3.2 Definitions and notations
TRIDN : public image (or identifier) of transaction index N .
This identifier shall depend (at least) on the value N and
be the result of a cryptographic function such that knowing
any number of TRIDN−i(i ≥ 0) identifiers it is impossible to
determine either N or any of the following TRIDN+j(j > 0)
identifier 8.

KAB,N : the session key shared between A and B after com-
pleting transaction of index N . This key shall depend (at
least) on N and KSB and be the result of a cryptographic
function such that knowing KAB,N and N it is impossible
to infer KSB .

H(V ): hash of value V whereH is a cryptographically secure
one-way hash function.

MACK(V ): Message Authentication Code applied to mes-
sage V and based on key K.

{V }K : encryption of value V using symmetric key K.

V1 ⊕ V2: the result of V1 XOR V2.

|| or , : concatenation operator.

len(V ): binary length of value V .

[V ]: optional value V .

trunc(V, n): the n leftmost bits of value V .

3.3 Operations on the responder side
This section describes the operations between entities S and
B assuming the shared secret KSB has been previously es-
tablished. Along with the shared secret, entities S and B
agree on the initial transaction index N0 which shall also be
kept secret. From the shared secret KSB and the current
transaction index N , entities S and B simultaneously derive
the TRIDN and KAB,N values associated to this transac-
tion (cf. section 3.2). An additionnal key KSB,N,MAC is
also derived from N and KSB through a cryptographic func-
tion such that knowing KSB,N,MAC and N it is impossible
to infer KSB . The KSB,N,MAC symmetric key is used for
authentication and integrity protection of information sent
from S to B.

8In this context, and further on, impossible means ”compu-
tationaly non-feasible with non-negligible probability”.
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At each transaction, B receives one of the following Authen-
ticated Message (AM):

x → B : TRIDN , TRCheckN ,MES,

MACKAB,N,A(TRIDN , TRCheckN ,MES)

x → B : TRIDN , TRCheckN , {MES}KAB,N,E ,

MACKAB,N,A(TRIDN , TRCheckN ,

{MES}KAB,N,E )

The only difference between these two AM variants is that
in the first case the original message MES is sent in clear
whereas in the second case it is encrypted. When MES is
encrypted, the symmetric keyKAB,N,E is used; this key shall
be derived from KAB,N through a public function. In both
messages, the sender x stands either for entity A or for entity
S. Usually the AM message will be sent directly by entity A
but, in some cases, the authorization server S would prefer
staying in the signalling path. When the AM message is sent
by entity A this implies that A has previously obtained all
the transaction material (TRIDN , TRCheckN and KAB,N )
from S (cf. section 3.4).

When receiving the AM message, entity B first checks that
the TRIDN value matches the current identifier for trans-
action of index N . This check is ”computation-free” for B
since it just has to compare the received value with the pre-
computed value of TRIDN for transaction of index N . If
the transaction identifier is valid, then B checks the MAC
code which applies to all the information contained in the
message. The MAC code is based on the symmetric key
KAB,N,A; this key shall be derived from KAB,N through a
public function. When KAB,N is only used to compute this
MAC no derivation is required (KAB,N,A = KAB,N ).

Finally, entity B has to check the TRCheckN information
(cf. section 3.4) which contains at least a MAC based on the
KSB,N,MAC symmetric key. The TRCheckN information is
computed by S and proves to B that the transaction was
authorized by S along with the main authentication param-
eters used by S. When the AM message is sent by S to B,
the TRCheckN information is no longer necessary since S
can guarantee itself the integrity of the AM message.

Most of the time, entity S will authorize ”concurrent” trans-
actions towards entity B from a set of entities Ai. In this
context, transaction loss or disordering may occur mean-
ing that AM messages sent by each Ai entity may not be
received by B in incremental transaction order or some of
them may be lost. This ordering problem may be the con-
sequence of heterogeneous processing powers among Ai, of
network message loss, or of compromised Ai entity request-
ing transaction to S but not sending the corresponding AM
message to B. For this reason, it is suggested that B main-
tains a sliding transaction window.

More precisely, if the current transaction index between en-
tities S and B is N , B creates a transaction window of size
∆, and pre-computes the transaction identifiers TRIDTI

for the ∆ consecutive transactions starting from index N .
For performance optimization, B may also pre-compute the
keys KAB,TI and KSB,TI,MAC associated to each TRIDTI

value9. When receiving an Authenticated Message with
transaction identifier TRIDX , B verifies if TRIDX matches
one of the pre-computed TRIDTI values inside the transac-
tion window. If no match is found, the message is silently ig-
nored, otherwise it is processed and the transaction window
is shifted forward according to the TI value. This check-
ing process is still ”computation-free” for B since he has to
perform at most ∆ comparisons (instead of one without the
transaction window). It is important to note that entity S
does not have to maintain a transaction window on its own
since it simply authorizes transactions consecutively.

Several algorithms may be applied to iterate the transaction
index N starting from its initial value N0 set up between S
and B. The simplest way is to increment the N value by 1 at
each new transaction. Unfortunately, such a linear scheme
does not achieve the PFS property because if entity S or B is
compromised the adversary obtains the KSB and N secrets
and consequently all the previous session keys associated to
the past transaction indexes (N−i, i > 0) are revealed . For
this reason, the transaction index shall be iterated through
a one-way function like N+1 = H(N).

3.4 Operations on the originator side
This section describes the operations between entities A and
S leading to the transmission to B of the Authenticated Mes-
sage (AM). Since the DoS protection is also important on the
originator side, especially for S which is the trusted third-
party (and has to be online), we retain the same principle
of transaction identifiers which serve as filtering values for
both A and S. This implies that during the initial config-
uration stage, in addition to establishing the shared secret
KAS , entities A and S also agree on a start-up value M0 for
the transaction index M . The current transaction index M
between entities A and S has the same semantic and usage
as the transaction index N between entities S and B. To be
more precise, we should note Mi the (current) transaction
index between entity Ai and S10, but for simplicity of nota-
tion we omit the i sub-index considering there is one single
A entity in the protocol description. The transaction index
M between A and S should be iterated also with a one-way
function to achieve the PFS property. It should be noted
that the M value between entities A and S is independent
from the N value between entities S and B.

From the shared secret KAS and the current transaction in-
dexM , the following information is computed independently
by entities A and S:

TRIDAM : transaction identifier (or public image) of trans-
action index M inserted in the authorization request from A
to S. This identifier shall depend at least on the M value and
be the result of a function such that knowing any number
of TRIDAM−i(i ≥ 0) identifiers, it is impossible to deter-
mine either M or any of the following TRIDAM+j(j > 0)
identifier.

TRIDSM : transaction identifier (or public image) of trans-
action index M inserted in the authorization response from
9An efficient algorithm to pre-compute all the transaction
material is provided in section 4.1.

10And similarly Nj the (current) transaction index between
entities S and Bj .
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S to A. This identifier has the same semantic and properties
as TRIDAM .

KAS,M,MAC1: this symmetric key depends on KAS and M .
It is used to compute the MAC code inserted in the autho-
rization request.

KAS,M,MAC2: same as KAS,M,MAC1 for the authorization
response.

KAS,M : this key is used as a one-time pad to convey securely
the KAB,N and TRIDN information computed by S to A.
The KAS,M key shall depend at least on M and KAS and
be the result of a function such that knowing KAS,M and
M it is impossible to infer KAS . Its length shall verify:
len(KAS,M ) = len(TRIDN ) + len(KAB,N ).

The protocol exchange between A and S is compounded of
the two following messages:

A → S : TRIDAM , ID,

MACKAS,M,MAC1(TRIDAM , ID)

S → A : TRIDSM , [ID′], OP, TRCheckN ,

MACKAS,M,MAC2(TRIDSM , [ID′], OP,

TRCheckN )

In the first message, which is called the authorization re-
quest, entity A indicates to S its wish to send to B the orig-
inal message MES11. The ID set of information contains at
least IDA and IDB identities; in some circumstances, en-
tity A may not know the identity of B which has to be set
by S. Additional information such as the characteristics or
purpose of message MES as well as previous transaction in-
formation may be inserted in ID, especially if S has to set
the identity of B. The authorization request also contains
the transaction identifier TRIDAM which changes at each
transaction. The whole message is authenticated and in-
tegrity protected with a MAC based on the KAS,M,MAC1

key. When privacy is required, the ID set of information
may be encrypted by using a symmetric key derived from
(at least) KAS .

When receiving the authorization request, entity S first checks
that it contains a valid transaction identifier TRIDAM . If
the transaction identifier TRIDAM is valid, this enables S
to identify A and to retrieve (or compute) the keying ma-
terial associated to this transaction with A. Based on the
KAS,M,MAC1 key, S is able to check the MAC code and
thus to authenticate A and verify the authorization request
integrity. Assuming the transaction is accepted by S, it re-
trieves (or computes) the transaction material it shares with
B for the current transaction index N (TRIDN , KAB,N and
KSB,N,MAC). Then S forms the authorization response for
A which contains the information shown in the second mes-
sage:

TRIDSM : transaction identifier provided by S in response
to TRIDSA for the current transaction of index M .

OP : public operand computed by S to convey securely the

11When the protocol is used solely for key establishment, the
MES message may be void.

TRIDN and KAB,N values needed by A to contact B. The
OP operand combines these two values with the KAS,M key
which is used as a one-time pad. A possible scheme for
producing OP is:

OP = KAS,M ⊕ (TRIDN ||KAB,N )

TRCheckN : authentication information provided by S to B
to prove that S has authenticated and allowed the transac-
tion of indexN for entity A. The set of information TRCheckN
shall be constructed in such a way that it can not be manip-
ulated by A and also that it can not be used by an adversary
to impersonate A. For this purpose, TRCheckN includes at
least a MAC based on the KSB,N,MAC key and computed
over the transaction main identifiers: IDA, IDB and option-
ally other fields like the N value or the contact addresses of
entity A or B (@IPA, @IPB). However, the transaction in-
dex N shall never appear in clear text. The various ways to
produce TRCheckN can be expressed as follows:

TRCheckN = [IDA], [IDB ], [@IPA], [@IPB], ...,

MACKSB,N,MAC (IDA, IDB , [@IPA],

[@IPB ], ..., [N ])

ID′: optional subset derived from ID in the authorization
request. This may be used to convey the IDB identity when
this information is set by S.

When receiving the authorization response, entity A checks
the TRIDSM identifier against the expected one and ver-
ifies the MAC code based on the KAS,M,MAC2 key which
is specific to this transaction. If the message is valid, en-
tity A then extracts the TRCheckN value and computes
the TRIDN and KAB,N values with the reverse operation:

(TRIDN ||KAB,N ) = OP ⊕KAS,M

Then A is able to form and send the AM message to B as
explained in the previous section.

Compared to the operations on the responder side, entity S
has to manage transaction identifiers TRIDAM and TRIDSM

for all the possible Ai entities. Since there might be a large
number of Ai entities, it is not possible for S to maintain a
sliding transaction window with each Ai. This means that
each Ai entity must respect the incremental order of the
transaction index M it shares with S and initiate transac-
tions sequentially rather than in parallel.

It should be noted that S may need to remain in the sig-
nalling path, in which case the protocol exchange between
A and S is slightly modified as shown below. The ID in-
formation is replaced by MES (which may be sent in clear
or encrypted), the TRCheckN and TRIDN values are no
longer required in the authorization response12:

A → S : TRIDAM ,MES,MACKAS,M,MAC1(

TRIDAM ,MES)

S → A : TRIDSM , OP,MACKAS,M,MAC2(

TRIDSM , OP )

12Consequently OP = KAS,M ⊕KAB,N .
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3.5 Complete protocol exchange
The complete protocol exchange is shown in Figure 1, as-
suming that the AM message is sent by entity A, that the
original message MES does not need to be encrypted and
that the KAB,N session key is solely used to ensure AM in-
tegrity (no key is derived from KAB,N ). From this three
party architecture, the simplified case with two entities is
obtained by assuming A = S and consequently the first two
messages are no longer necessary.

Figure 1: Complete protocol exchange.

3.6 Analysis of requirements
The IDDR-CEP protocol is now analysed regarding security
requirements of section 1.3:

Mutual authentication: mutual authentication is under the
responsibility of the trusted third party S. Entity S asserts
to B that A has been authenticated under identity IDA with
the TRCheckN information. Let us suppose that A inserts
a wrong identity IDA′ in the MES section of the AM mes-
sage then B computes MACKSB,N,MAC (ID′

A, ...) and de-
tects that this does not match the MAC value contained
in TRCheckN . On the other way round, in the authoriza-
tion response, entity S authenticates the identity of B or its
contact address when necessary.

Access control : entity A has to authenticate towards S to
communicate with B. Therefore, S can throttle the number
of requests towards B in case A is an adversary or compro-
mised entity. It is clear, although not detailed for simplifi-
cation purposes, that the protocol works just the other way
round when B wants to communicate with A.

Session key : the session key KAB,N meets the freshness
property since a new key is generated at each transaction.
With regards to key authentication, only entity A is able
to compute the KAS,M key and thus retrieve KAB,N from
the OP operand. Also B has the assurance to be speaking
with A since TRCheckN authenticates IDA but also pos-
sibly the contact address for A. Session key confirmation is
not explicitly included in the protocol, but we assume it is
realized in further messages sent from B to A13.

13Assuming MES is a SIP-INVITE request, A will later re-
ceive a call establishment response from B which implicitly
confirms the correct key establishment.

Privacy : starting from the AM message, privacy is enforced
as soon as TRCheckN does not carry any explicit identifier
and MES is encrypted using a symmetric key derived from
KAB,N . Looking at messages between A and S, privacy is
enforced as soon as the ID and ID′ sets of information are
encrypted (with a symmetric key derived from KAS) while
the TRIDx values are sufficient to identify the sender.

DoS protection: the first protection comes from the use of
symmetric cryptography and the chosen protocol exchange
which does not require the responder B to contact a third
party to check the AM message. The second protection
comes from the use of transaction identifiers (i.e. TRIDN ,
TRIDAM , TRIDSM ) which serve as a ”computation-free”
first level of verification for the receiving entity. Finally,
all the transaction keys can be pre-computed thus limiting
the need for ”on-line” sequential computation to just the OP
operand and the MAC codes. It should be noted that the
OP value is trivial to obtain as soon as the KAB,N and the
KAS,M keys are pre-computed.

Perfect Forward Secrecy : starting from the AM message and
looking at off-line passive attacks, an eavesdropper may try
to recover KSB,N,MAC and KAB,N by trying some kind of
brute-force attack. For KAB,N this may be achievable, but
this will not reveal any other KAB,N±i key. For KSB,N,MAC

this seems impossible if the associated MAC incorporates the
N index. Looking at messages between A and S, if an off-
line adversary has previously guessed the KAB,N key, it can
retrieve the KAS,M key from the OP value (which is passed
in clear) but none of the others KAS,M±j keys. Concerning
the transaction identifier TRIDN (same analysis applies to
IDTRAM and IDTRSM ), if it is the truncated result of a
one-way hash function over a large N value, the probability
to recover N from TRIDN is almost null. However, for
increased security, it is recommended that TRIDN depends
on both N and KSB (cf. section 4.1). Now assuming an
adversary has compromised entity S or B (same analysis
applies to A), it has access to KSB and the current N value
but it can not retrieve the previous session keys because
the N value can not be inverted14. In summary, the PFS
property is obtained because IDDR-CEP is a key-agreement
scheme and because the various keys used by the protocol
are changed at each new transaction based on a one-way
function.

Anti-replay : assuming the current transaction of index N is
completed on the responder side (B entity), then the trans-
action window is shifted forward meaning the transaction
index N and the associated values (TRIDN , KAB,N and
KSB,N,MAC) are no longer valid. Consequently, if a valid
AM message is replayed, it will be silently ignored by B
without requiring further processing. The same protection
applies to the protocol exchange between entities A and S.
Finally, because the keys are automatically renewed at each
transaction, it seems impossible to inject in the protocol a
previous session key.

14It is implicitely assumed that all the keying material from
previous transactions is automatically erased.
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4. PROTOCOL IMPLEMENTATION
In this section we describe three modes of implementation
of the protocol in a VoIP context. The first one is based
on a trusted third party whereas the last two operate be-
tween two domains sharing a long term secret. The last two
modes show a three party architecture from which the sim-
plified case (with only two entities) can be easily deduced
by assuming S = B (in mode 2) or S = A (in mode 3). Be-
forehand we propose an efficient way for deriving the keying
material required for each transaction.

4.1 Cryptographic material
The MACK(V ) values are computed following the HMAC
standard [19] with the SHA-256 hash function. The {M}K
encrypted values are computed following the AES-128 stan-
dard [18]. The key lengths chosen in this section, as well as
the transaction index lengths, are for illustration only and
should be adapted depending on the application specific se-
curity requirements:

KSB ,KAS : 128-bit symmetric keys.

N,M : 120-bit values.

Let DCX be some 8-bit public constants used for key deriva-
tion purpose. From the previous secrets and DCX values,
the following keying material is obtained:

KAB,N = {DC1||N}KSB : 128-bit key.

KSB,N,MAC = {DC2||N}KSB : 128-bit key.

TRIDN = trunc({DC3||N}KSB , 64): 64-bit (public) trans-
action identifier.

KAS,M = trunc(({DC4||M}KAS ||{DC5||M}KAS ), 192): 192-
bit key15.

KAS,M,MAC1 = {DC6||M}KAS : 128-bit key.

T = {DC7||M}KAS : 128-bit value which is logically split in
two parts of 64 bits each: T = TRIDAM || TRIDSM .

KAS,M,MAC2 = KAS,M,MAC1 ⊕ LC : 128-bit key (LC is a
128 bit non null constant).

The next transaction indexes are computed as: N(+1) =
trunc(SHA-256(N), 120), M(+1) = trunc(SHA-256(M), 120).

4.2 Implementation mode 1
As shown in Figure 2, entity A is one of the outbound VoIP
proxies in domain A, entity B is one of the inbound VoIP
proxies in domain B and S is the trusted third party which
is responsible for domain authentication and for phone num-
ber routing and verification. Most of the time, the endpoints
are not A and B themselves but rather A’ or B’ which might
be a VoIP terminal or another proxy. In this mode, en-
tity A sends the authorization request to S in the form of
a SIP-OPTIONS message with a text body part containing
the protocol information TRIDAM , ID, MACKAS,M,MAC1

(TRIDAM , ID). Then S responds to A with a SIP 200OK

15This fulfills: len(KAS,M ) = len(TRIDN ) + len(KAB,N ).

Figure 2: First mode of implementation.

message containing the required information. Finally, A
sends the SIP-INVITE request to B including the TRIDN ,
TRCheckN values and the MAC code. Since the length
of these fields is short, they can be easily conveyed in the
SIP-INVITE header, for example as an extension of the User-
Agent field. Further SIP dialogue takes place between en-
tities A and B which now share the KAB,N key and can
confirm it in the forthcoming messages. It should be noted
that this mode also applies to intra-domain context where
A, B and S are from the same domain.

4.3 Implementation mode 2
As shown in Figure 3, entity A is one of the outbound VoIP
proxies in domain A, entity S is one of the inbound proxies
in domain B. Entity B may be a user endpoint in domain
B, another proxy in domain B or even a proxy in a vis-
ited domain C where the responder endpoint is currently
attached. In this mode, entity A queries authorization to S
with a SIP-OPTIONS request and in the SIP-200OK response
S indicates the contact address where the final SIP-INVITE
request shall be sent. It may be either the B entity (for
optimized routing) or S itself if it needs to remain in the
signalling path.

In this mode, domains A and B need to share the KAS

and M secret values which raises scalability issues when do-
main B may be accessed from any other Internet domain.
Therefore, it is proposed to mix this mode with the previ-
ous one. In extended, domain B has a shared secret with
trusted domains with whom significant traffic is exchanged.
Untrusted domains, or domains with whom sporadic traf-
fic is exchanged must go through a trusted third party as
described in the previous mode.

4.4 Implementation mode 3
As shown in Figure 4, entity S is one of the outbound VoIP
proxies in domain A, entity B is one of the inbound proxies
in domain B. Entity A may be a user endpoint in domain
A, another proxy in domain A or even a proxy in a visited
domain C where the initiator endpoint is currently attached.
In this mode, entity A first queries authorization to S with a
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Figure 3: Second mode of implementation.

Figure 4: Third mode of implementation.

SIP-OPTIONS/SIP-200OK exchange and S indicates the con-
tact address for B. The final SIP-INVITE request may be sent
either by A or by S itself (if it needs to remain in the sig-
nalling path). Compared to mode 2, domain B only receives
the final SIP-INVITE request. This reduces the number of
messages that have to be processed by the called domain,
but on the other hand this precludes optimized routing. As
in mode 2, a shared-secret is required between domains A
and B, which leads to the same comments.

5. DISCUSSION AND CONCLUSIONS
The proposed mechanism is a key exchange protocol which
is designed for open inter-domain context where intercon-
nection proxies can be reached from anywhere on the public
Internet and thus may be the target of (D)DoS attacks. For
this reason, we have chosen to use symmetric cryptography
and favoured receiver DoS protection by adding a transac-
tion identifier in each message. This identifier is used as
a ”computation-free” filter value on the responder side and
also as a pointer to fetch the (pre-computed) cryptographic

material associated to the transaction.

From an heuristic analysis, we also expect the protocol to
meet the security requirements of authentication, key fresh-
ness, privacy, PFS and anti-replay. Because IDDR-CEP is
based on a key-agreement scheme it is resistant to off-line
passive attacks. Furthermore, since the protocol information
conveyed in each message is short (except the OP value), the
VoIP signalling transport over UDP can be preserved.

In section 4, we described various implementations of the
protocol in a VoIP context, although it can be adapted to
other applications. In mode 1, a trusted third party is in
charge of authentication, routing and key establishment be-
tween domains. With this setting, entity B can receive an
authenticated and optionally encrypted message from any
other Internet domain without the need for previous round
trip with entities A or S. In modes 2 and 3, a shared secret is
established directly between a pair of domains thus removing
the need for a trusted third party. Various options are still
applicable within each mode, especially the choice of the en-
tity which sends the final SIP-INVITE request. The classical
VoIP trapezoidal call model can be preserved, whereas more
optimized routing schemes can also be supported. Similarly,
several options are available for carrying the authorization
information between A and S. However, a cleaner implemen-
tation would require defining specific SIP information fields
for this protocol.

Using a trusted third party in implementation mode 1 raises
some operational issues although we believe this is necessary
for at least phone number routing and verification, as well
as regulatory constraints [11]. Actually, the S entity appears
as a single point of failure because it is in charge of authenti-
cation and of ensuring key agreement between parties. This
limitation may be reduced with load balancing and possibly
by using some kind of P2P architecture for implementing
the S entity functions. As explained in section 4.3, mode 1
can be mixed with the two other implementation modes: the
responder domain has a shared secret with a couple of estab-
lished domains (modes 2 and 3), whereas untrusted domains
must go through a trusted third party (mode 1).

Finally, two issues related to the management and synchro-
nization of the transaction window by entity B are antici-
pated. The first one occurs in mode 1 if entity S authorizes
several transactions towards entity B, but∆ consecutive AM
messages are lost, or retained by compromised entities Ai,
and thus not received by B. Then the ”∆+ 1” AM message
will be considered as invalid when received by B, leading to
a blocking state. The second limitation occurs in modes 2
or 3, where the responder domain B would have to maintain
a transaction window with each other domain, which raises
a scalability issue.

In addition to investigating these two issues, future work
on IDDR-CEP includes prototyping, performance evalua-
tion and more formal proof of security properties.
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ABSTRACT
Exchanging keys to encrypt media streams in the Session
Initiation Protocol (SIP) has proved challenging. The chal-
lenge has been to devise a key transmission protocol that
preserves the features of SIP while minimizing key exposure
to unintended parties and eliminating voice clipping. We
first briefly survey the two IETF SIP media keying proto-
cols – SDES and DTLS-SRTP – and evaluate them against
a core feature set. We then introduce a novel simple and
lightweight scheme to significantly increase the security of
SDES SIP keying with minimal overhead costs. Our pro-
posed key exchange involves only one symmetric key opera-
tion by sender and receiver and is secure against the Man-
in-the-middle attack unless the attacker is able to intercept
both the SIP signaling and media plane traffic. Our key ex-
change scheme is much simpler than DTLS-SRTP; in fact,
compared to SDES, it includes only one additional simple
step. At the same time, it provides significantly better secu-
rity than SDES and is only slightly weaker than the non-PKI
version of DTLS-SRTP.

Keywords
SIP, key exchange, media, security, SDES, DTLS

1. INTRODUCTION
The Session Initiation Protocol (SIP [17]) is an Internet

protocol to set up, maintain, and terminate multimedia ses-
sions. While SIP is used to rendezvous the session partici-
pants, the session itself is conducted using separate proto-
cols. The Session Description Protocol (SDP, [11]), which is
transported in SIP is used to describe endpoint capabilities,
exchange the voice or video codecs and network identifiers
— IP addressses and port numbers — where the media will
flow.) The media itself, i.e., the actual contents that com-
prise the voice or video session, use the Real-Time transport
Protocol (RTP, [18].)

Because the protocols for initial rendezvous, capability de-
scription, and eventual media stream are different, it be-
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comes a challenge to provide security for the system as a
whole. As an example of this challenge, consider that signal-
ing in SIP can be protected by hop-by-hop use of Transport
Layer Security (TLS [6]), yet the media often flows end-to-
end using plaintext RTP. Furthermore, the protection af-
forded to the signaling messages is such that confidentiality,
message authentication and replay protection are ensured on
a per hop channel, but the intermediary that forwards the
signaling onwards have unhindered access to the plaintext
that comprise the signaling messages.

Today, while secure keying techniques (e.g., DTLS-SRTP)
are available and standardized, SIP implementations pre-
dominantly use (weakly secure) SDES key transmission for
securing media-plane communication (see Table 1 for sam-
ples collected at SIP interoperability events.) This state
of affairs is due to the implementation complexity and in-
creased computation and communication costs associated
with the public-key based proposals, such as DTLS-SRTP
and ZRTP[24].

Our Contributions and Outline of the Work
We close this security/efficiency gap, by proposing a new
media keying protocol that involves only one symmetric key
operation by sender and receiver and is secure against man-
in-the-middle (MiTM) attack unless the attacker is able to
intercept both the SIP signaling and media plane traffic. To
match its efficacy against the standardized SIP media keying
protocols, we first analyze the two media keying protocols –
Security Descriptions (SDES [1]) and DTLS-SRTP [14] for
their suitability in a SIP network. We chose to focus on
these two protocols primarily because they are standardized
by the Internet Engineering Task Force (IETF) and as such
will witness large-scale deployment in SIP networks.

To analyze a protocol’s ability to successfully key media
SIP streams, we list a feature set against which the partic-
ular media keying protocols, including our novel contribu-
tion, will be evaluated. We will see that our key exchange
scheme is much simpler than DTLS-SRTP; in fact, com-
pared to SDES it includes only one additional simple step.
At the same time, it provides significantly better security
than SDES and is only slightly weaker than the non-PKI
version of DTLS-SRTP.

The paper is structured as follows: Section 2 presents the
required background on SIP and SRTP. Section 3 identifies
the core feature set that the keying protocols should support.
Sections 4 and 5 review SDES and DTLS-SRTP protocols,
respectively, and evaluate them on the core feature set. We
present our novel keying method, analyze its security, and
subject it to the same core feature set evaluation in Section
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Table 1: Support for SRTP in SIP
SIPit number (date) Total unique Number supporting Number using Number using

implementations SRTP SDES DTLS-SRTP

18 (April 2006) 73 10 7 0
19 (October 2006) 90 12 predominant a 0
20 (April 2007) 90 9 4 1
21 (November 2007) 70 17 0 0
22 (April 2008) 80 32 predominant b 0
23 (October 2008) 50 8 0 1
24 (May 2009) 43 16 0 1
25 (September 2009) 42 14 4 0
26 (May 2010) 42 23 23 0

aExact number unknown, SIPit 19 archives state ”Keying was predominantly sdes.”
bExact number unknown, SIPit 22 archive states ”Most of the tests established the session using sdes.”
Data for this table gathered from SIPit official website at https://www.sipit.net/SIPitSummaries. A 0 in column 4 or 5
signifies no support for that particular keying protocol. It is not the case that the number of implementations supporting
SDES and DTLS-SRTP add up to the number supporting SRTP; in some cases, implementations were using unspecified means
to key the SRTP stream.

6. Section 7 provides related work; we conclude in Section
8.

2. THE SESSION INITIATIONPROTOCOL
A SIP ecosystem consists of user agents, proxy servers,

redirect servers, and registrars. Of special interest to us with
respect to this paper are user agents and proxy servers.

2.1 Establishing a SIP Session
There are two types of SIP user agents: a user agent client

(UAC) and a user agent server (UAS). A UAC and a UAS
are software programs that execute on a computer, an In-
ternet phone, or a personal digital assistant (PDA). A UAC
originates requests (i.e. start a multimedia session) and a
UAS accepts and acts upon a request. Proxy servers are
used to route requests and responses between a UAC and a
UAS.

SIP invests a great amount of trust in the proxies, as we
will see later in this paper. In the canonical SIP trapezoid
[17], Alice wishes to establish a session with Bob. Her SIP
request to establish a session traverses through her proxy
to Bob’s proxy. Bob’s proxy performs a lookup service to
determine where Bob can be located, and forwards Alice’s
request to Bob. If Bob responds in the affirmative, the re-
sponse backtracks the path taken by the request to reach
Alice. Note that the media session is established directly
between Alice and Bob, and does not go through the inter-
mediary proxies.

2.2 RTP and SRTP
In SIP, the media is transported end-to-end using RTP,

which exchanges packets in cleartext. A profile called Secure
RTP (or SRTP [4]) was subsequently developed to provide
confidentiality, message authentication, and replay protec-
tion to the cleartext RTP traffic. Conceptually, SRTP can
be viewed as a “bump in the stack” implementation that re-
sides between the RTP layer and the transport layer. SRTP
intercepts RTP packets and then forwards an equivalent
SRTP packet on the sending side, and intercepts SRTP pack-
ets and passes an equivalent RTP packet up the stack on the
receiving side [4].

To achieve the goals of confidentiality, message authenti-
cation, and replay protection, SRTP defines extensions to
the RTP packet format to encrypt the RTP payload. Each
SRTP stream requires the sender and receiver to maintain
cryptographic state information (the“cryptographic context”).
The cryptographic context provides all the necessary param-
eters such as the chosen cipher, its mode of operation, and
the block size; the master key; session keys; etc. SRTP uses
two types of keys: session key and a master key. The session
key is used directly in a cryptographic transform (i.e., pay-
load encryption or message authentication) and the master
key is a random bit string provided by the keying protocol
from which session keys are derived in a cryptographically
secure manner. The master key, salt, and other parame-
ters in the cryptographic context are provided by keying
mechanisms — such as SDES or DTLS-SRTP — external
to SRTP. SRTP is increasingly being used in SIP; however,
its wide-spread adoption has been slow (see Table 1.)

The cryptographic context itself is selected by a 32-bit
numeric field carried in the fixed RTP header called Syn-
chronization source (SSRC), which is used to identify the
source of a RTP stream. Some keying protocols provide
this to SRTP, while in others the SSRC is obtained dynam-
ically when SRTP packet arrives at a receiver (the SSRC
field is part of the fixed RTP header that is used without
any change in SRTP; the only difference being that in SRTP
the integrity of the RTP header is protected by a message
authentication code.) Since SSRC is a random 32-bit num-
ber, the chance of independent RTP streams generating the
same SSRC, while small, does exist. However, the two key-
ing protocols handle such collisions appropriately.

While DTLS-SRTP is able to agree on the master key,
salt and other parameters independently at the peers, some
amount of information to tie the media stream to the sig-
naling channel to prevent a third party from inserting false
media packet can be provided by the signaling layer. To
accomplish this, DTLS-SRTP can transport the fingerprints
of the public certificates exchanged between the peers as an
a=fingerprint attribute in SDP. As we will observe in Sec-
tion 4, SDES transports the entire cryptographic parame-
ters, including the master key and salt in an a=crypto SDP
attribute.
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3. IDENTIFYING A FEATURE SET
We now establish a core feature set that we consider im-

mutable. That is, when we analyze the key exchange pro-
tocols, we will analyze them with a view towards how they
support (or do not) this core feature set in a transparent
manner (i.e., the feature behavior should not be modified
to conform to the machination of the specific media keying
protocol.) This core feature set includes features that are
intrinsic to how SIP works as a protocol as well as features
that use SIP as a service enabler. Some of the features in our
set overlap with those outlined in Wing et al. [23], however,
we go further by including in our set those features that are
deemed out of scope (e.g., shared-key conferencing) or not
discussed at all (e.g., legal interception) in Wing et al. [23].

We consider eight features important enough to be sup-
ported by a key exchange protocol. Of these eight, six are de-
scribed in Wing et al. [23]. These are: forking, the Heteroge-
neous Error Response Forking (HERFP) problem, minimiz-
ing media clipping, re-targeting, placing calls from the Inter-
net to the public-switched telephone network (PSTN), and
shared-key conferencing. Shared-key conferencing, while de-
scribed in Wing et al. [23] is deemed out of scope in their
analysis; we include it in our analysis. There are an addi-
tional two features that are not mentioned in Wing et al.
[23]; these are legal intercept and session recording. We de-
fine them below.

3.1 Security Model
Before proceeding with the feature set, it is important

to understand the guarantees and limitations of the secu-
rity services provided by the keying techniques. First, we
stress that we analyze security against very strong adver-
sary, so-called Man-in-the-Middle (MiTM) who fully con-
trols the communication channel between the parties. Such
adversaries are standard in cryptographic design and anal-
ysis of key exchange protocols [5, 20, 12, 13]. In particular,
most adversarial capabilities considered by IETF and other
standards communities are special cases of MiTM.

Second, flooding attacks are far easier to mount against
the SIP protocol itself than they are against some of the key-
ing techniques [9]. DTLS-SRTP in particular only performs
a pair-wise key exchange with the peer that is interested
in establishing a session (i.e., responds with a 200 OK re-
sponse message.) Thus, the only way an attacker can mount
a flooding attack at the keying layer is by causing the initial
request to fork to many endpoints, each of which returns a
200 OK response to the sender. This will cause the sender
to enter a pair-wise key exchange session with multiple end-
points simultaneously. Note that an attacker that simply
causes a swarm of manufactured 200 OK responses to be
sent to an arbitrary victim does limited harm to the victim
because such a response will not match any pending SIP
transaction in the victim’s transaction state table, causing
the victim to simply throw away the response at the cost of
a search across the transaction table. Thus we limit our dis-
cussion on flooding attacks as well, unless a certain feature
requires specific discussion for such an attack.

3.2 Feature: Legal Interception
In order to comply with the legal procedures and regula-

tory environments pertinent to business practices and coun-
try codes, traditional switched networks evolved to support
legal interception of the media traffic by law enforcement or

by business or enterprise for other reasons (e.g., recording
calls at a call center for training or at a financial brokerage
firm for non-repudiation.) In an end-to-end key exchange
model, this operational requirement becomes harder to en-
force because the service provider will not have access to the
master key.

3.3 Feature: Session Recording
Session recording is a critical operational requirement in

many businesses, especially where voice is used as a medium
for commerce and customer support [22]. SIP does not — at
the protocol level — provide any explicit support for session
recording. In fact, if Alice is talking to Bob, either can decide
to record the session on their local endpoints, assuming that
the local endpoint is capable of recording and storing media
(in the most general case, recording is simply duplicating
arriving and departing media packets and storing them in
a persistent store while maintaining the temporal ordering
between the packets.)

The problem arises when the local endpoint cannot do
recording and a specialized entity — a recording server —
has to be invited to a session in order to perform recording.
Under this model, Alice and Bob have to send their media
streams to the recording server. When Alice and Bob use
SRTP, the recording server will not have the required key
to decrypt the media for a subsequent playback. There are
several ways to mitigate this problem.

One way is for Alice or Bob to send the mixed but unen-
crypted RTP media stream to the recording server. How-
ever, this compromises the privacy of the communications
between Alice and Bob if the plaintext media is being sent
to the recording server over an insecure channel. A sec-
ond approach is to share the master key with the recording
server — the mixed SRTP media stream is directed towards
the recording server and when the session ends, the SRTP
master key is shared with the recording server. Wing et al.
[22] discuss mechanisms by which the key sharing can be
performed. One subtlety to be addressed here is that the
recording server may be able to interfere with the commu-
nication, since it is given the key used to secure it.

A more secure approach at addressing the problem is for
Alice or Bob to execute a key exchange with the record-
ing server. Then, the mixed media is sent to the recording
server encrypted using the exchanged key. The disadvantage
here is the added complexity of this approach and increased
processing on the client responsible for the re-encryption of
media to the recording server.

4. SECURITY DESCRIPTIONS

4.1 Security Descriptions Overview
Conceptually, SDES is the simpler of the two key man-

agement protocols. Simply put, it arranges for the SRTP
master key, salt, and other parameters to be transported in
the SIP signaling messages (thus pedantically, it is not a key
exchange protocol as much as a key transport protocol.)

SDES defines a new SDP attribute called “crypto” that is
used to signal and negotiate cryptographic parameters for
SRTP media streams. This attribute transports the encryp-
tion and authentication algorithms, master key and salt of
the sender (i.e., the receiver should use the said master key
and salt to derive session keys for decryption), and the life-
time of the master key (i.e., maximum number of SRTP and
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SRTCP packets that use this master key.)
In its simplest form, the UAC inserts this parameter in

the SDP of the INVITE request and sends it to the UAS;
the UAS inserts this parameter in the 200 OK response and
transmits it to the UAC. Consequently, SDES provides dis-
tinct keys for each media stream in each direction. The
example below shows the “crypto” attribute in an INVITE
from Bob to Alice (only pertinent SIP headers shown):

INVITE sip:bob@example.com SIP/2.0
To: Robert <sip:bob@example.com>
From: Alice <sip:alice@example.org>;tag=0ij8z
Content-type: application/sdp
[...]

v=0
o=alice 2890844526 2890844526 IN IP4 a.example.org
s=-
c=IN IP4 192.0.2.101
t=0 0
m=audio 49170 RTP/SAVP 0
a=crypto:1 AES_CM_128_HMAC_SHA1_80
inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20

The“crypto”attribute above identifies the encryption and
authentication algorithm (AES CM 128 HMAC SHA1 80)
and specifies the master key, salt, and the lifetime of the
master key (220). The master key and salt are concatenated
and base 64 encoded
(NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj).
The sender of the “crypto” attribute uses the master key to
derive the session key for encryption and the receiver uses it
to derive the session key for decryption.

Evidently, if the SIP request or response containing the
“crypto” attribute is transmitted in the clear, a malicious
eavesdropper can gain access to the master key. Thus, the
cryptographic keys and other parameters should be secured
on a hop-by-hop link using TLS. While this prevents unau-
thorized eavesdroppers from gathering the cryptographic keys,
it does not afford complete privacy or confidentiality to the
media session because the intermediaries at the end of the
hop-by-hop TLS link will have access to the cleartext cryp-
tographic keys.

MiTM attack remains a problem for SDES — if an adver-
sary is able to inject itself as a next hop in the intermediary
chain, it will have complete access to the cryptographic pa-
rameters. From this point of view, SDES may be considered
the least secure of the keying protocols we consider. Note
that the use of TLS-secured channels across the intermedi-
ary chain does not guarantee secure and private delivery of
session keying material. This is because, as of this writing,
guidelines on SIP certificate issuance are in the process of
being standardized [10] and until a certificate can be issued
specifically for a SIP service, any other certificate (e.g., one
issued for the use of web services) may suffice. Thus, an ad-
versary may be able to obtain a legitimate certificate from
a certificate authority and then insert itself in the inter-
mediary chain by techniques such as DNS cache poisoning.
We discuss additional subtle vulnerabilities of SDES in Sec-
tion 6.

4.2 Suitability for Feature Set
We now discuss how SDES supports the feature set we

outlined in Section 3.

Forking:
In SDES key leakage occurs as a result of forking; the mas-

ter key from the initiator of the request will be replicated to
all of the forked branches. One way to deal with this is to
re-key the media stream after the initial session has been suc-
cessfully established with one forked branch, thereby making
obsolete the old key available at the remaining branches.

HERFP remains a problem for SDES because a higher-
class response that intends to negotiate the “crypto” param-
eters gets masked by a lower class response.

Media Clipping:
Media clipping also remains a problem with SDES. Each

party selects their own keys for the encryption of the traf-
fic they generate and send these keys to the other party.
Consider the case where Bob establishes a session with Al-
ice, and in that session description, he provides his cryp-
tographic keys. Alice accepts the session and provides her
cryptographic keys for decryption in the 200 OK and starts
speaking, thus causing SRTP packets to go directly from
her user agent to Bob’s user agent. Due to the hop-by-hop
nature of her 200 OK signaling response, the SRTP pack-
ets, which take a direct route, may get to Bob’s user agent
first. However, Bob does not have Alice’s cryptographic key
to decrypt the packet, causing playout delay or clipping to
occur.

Re-targeting:
Re-targeting in SDES suffers from the same key leakage

problem of forking. When an intermediary proxy re-targets
a request, it cannot, obviously, change the cryptographic
keys. Furthermore, the initiator of the request will not know
that re-targeting has occurred until he or she establishes a
session and exchanges some media packets with the recipient
(that is, only when Bob talks to Alice’s delegate, Carol, does
he know that he is not talking to Alice.)

Conferencing:
SDES is not suitable for general conferencing since the

definition of the “crypto” attribute is limited to a two-party
unicast media stream where each source has a unique cryp-
tographic key.

Calls to Other Networks:
There is nothing intrinsically prohibitive about support-

ing calls to other networks in SDES. However, SDES can
only secure communications within the portion of the net-
work that supports it. That is, if SDES is negotiated by
a UAC and a PSTN gateway, the media is protected using
SRTP between the UAC and the PSTN gateway. When ses-
sions continue to the PSTN from the gateway, SDES will be
unable to secure the portion of the session that continues to
the PSTN (or any other network.)

Legal Interception:
Insofar as legal interception can be supported by provi-

sioning known cryptographic keys in endpoints, SDES will
support it. Unlike DTLS-SRTP that negotiate the keys in
the media layer, an endpoint that uses SDES can be provi-
sioned with a key known to the operator of the service.

Session Recording:
Because SDES transports the cryptographic keys in sig-

naling, it is conceivable to route the signaling messages through
a recording server such that it has access to the SRTP mas-
ter key of each endpoint in a session.

However, there is a subtelty that comes into play here.
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Because the keys are delivered to the recording server in the
initial request to establish a session, the recording server can
act as a MiTM and inject or modify any encrypted media
packets (note that while a SIP proxy also has access to the
keys, the difference is that proxies are trusted in SIP whereas
a recording server may not be.) A better solution would be
to provide the keys to the recording server at the end of
the session (through a SIP BYE request), but the SDES
specification [1] does not contain any such provisions.

5. DTLS-SRTP
We start with reviewing DTLS-SRTP and then in Section

5.3 discuss its suitability for supporting the basic features
described in Section 3.

As we build the presentation from the top down, note that
DTLS-SRTP is a DTLS-based extension of SRTP, designed
to combine the performance and security flexibility benefits
of SRTP with the key and association management of DTLS.
DTLS-SRTP can be equivalently viewed as a key manage-
ment method for SRTP, or as a new RTP-specific data for-
mat for DTLS. We now briefly discuss DTLS, to give the
necessary background for the discussion of the main aspects
of DTLS-SRTP.

5.1 DTLS Overview
DTLS — Datagram TLS [15] — is an adaptation of the

established and well-understood TLS to the datagram trans-
port. The design goal of the authors of DTLS was only min-
imal deviation from TLS, for the simplicity of analysis (in
relation to the complex TLS), and minimization of the risks
of introducing errors or vulnerabilities. For the purposes
of this survey paper, the differences introduced by DTLS
can be largely ignored, and a reader familiar with TLS may
assume that DTLS is a faithful implementation of TLS exe-
cuted over datagram transport. For completeness, we give a
brief overview of DTLS, and make several comments on its
inherited and introduced vulnerabilities.

DTLS message exchange
In this section, we omit some cryptographic details, such
as agreement on suites, etc. For concreteness, we show the
case with mutual authentication using RSA. (If the Client
is not authenticated, “request cert”, ClientCertificate and
ClientCertificateVerify messages are not sent. Then the
Client avoids the expense of the computation, and the Server
does not perform corresponding verifications.) Further (not
included in the diagram), an optional cookie is exchanged
prior to the core execution to mitigate DoS attacks. That
is, server only proceeds to the crypto-intensive part of the
handshake, if the client is able to replay the cookie sent to
the claimed IP address.

DTLS core description
The description below depicts the cryptographic core of the
DTLS exchange; it is not a complete description of the DTLS
protocol itself.

Client Server

C.random → (1)

← S.random (2)
← pkS, certS, (3)
“req. cert”

Verify certS

pkC , certC → (4)
Choose rand. r EncpkS

(r) → (5)
sigpkC

(H(
prev.msgs)) → (6)

Verify certC

Verify sigpkC

Decrypt
EncpkS

(r)
to obtain r,

where messages (1)-(6) are:

1. ClientHello

2. ServerHello

3. ServerCertificate

4. ClientCertificate

5. ClientKeyExchange

6. ClientCertificateVerify

The session key is set to PRF (r, “master secret”,
ClientHello.random+ServerHello.random). Note, prev.msgs
includes all previously exchanged messages, and, in partic-
ular, EncpkS

(r), C.random and S.random. SignpkC
is the

public key signature.
Here pkC , pkS, certC , certS are public keys and certificates

of the client and server respectively. Certificates include the
public keys, but we wrote them out separately to be explicit.
Note that these parameters are transmitted in the clear and
are publicly known.

DTLS security
First, we would like to point out that DTLS-SRTP and its
use in SIP are not vulnerable to variants of Man-in-the-
Middle (MitM) attack on TLS derivatives, described in [3],
even though, by design, no improvements were introduced
in the DTLS derivation. The reason is that the attack is
applicable only in a few settings, namely, where TLS is used
to establish a tunnel over which a second-factor (e.g. pass-
word) authentication is performed.

Given that DTLS-SRTP is run in mutual authentication
mode, it provides good protection against active attacks. In
addition to TLS DoS attacks, DTLS suffers from the stan-
dard resource consumption attack, and an amplification at-
tack. In our opinion, both of these are of mild severity,
and are further mitigated by the cookie exchange described
above.

DTLS-SRTP depends on a PKI to prevent MiTM at-
tacks. Additionally, to remove/reduce reliance on PKI,
DTLS-SRTP endpoints exchange the fingerprint of the cer-
tificates in SIP signaling channel; when key exchange is per-
formed in the media channel, each side compares the other
sides fingerprint to the received key. A MiTM attack would
effectively need to control both the media and signaling to
mount a successful attack.
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5.2 DTLS-SRTP Overview
While DTLS provides the key to the communicating par-

ties, DTLS-SRTP specifies its usage in the following data
exchanges.

DTLS-SRTP is defined for point-to-point media sessions,
in which there are exactly two participants. Each DTLS-
SRTP session contains a single DTLS association, and either
two SRTP contexts (if media traffic is flowing in both direc-
tions on the same host/port quartet) or one SRTP context
(if media traffic is only flowing in one direction). All SRTP
traffic flowing over that pair in a given direction uses a single
SRTP context. A single DTLS-SRTP session only protects
data carried over a single UDP source and destination port
pair in a single direction.

The general pattern of DTLS-SRTP is as follows. For each
RTP or RTCP flow, the peers do a DTLS handshake on the
same source and destination port pair to establish a DTLS
association. Which side is the DTLS client and which side is
the DTLS server is established via an out of band mechanism
(SIP). The keying material from that handshake is fed into
the SRTP stack. Once that association is established, RTP
packets are protected (becoming SRTP) using that keying
material.

Between a single pair of participants, there may be multi-
ple media sessions. There must be a separate DTLS-SRTP
session for each distinct pair of source and destination ports
used by a media session. However, for efficiency, it is rec-
ommended that such sessions share a single DTLS session
and hence amortize the initial public key handshake. This
is done by deriving separate DTLS-SRTP master keys for
each DTLS-SRTP session from the same DTLS output.

Credentials and Authentication
The security of entire data exchange run by DTLS-SRTP
is dependent on the integrity of the public key certificates
possessed by the communicating parties. Ideally, they will
be maintained by a PKI; however this solution has potential
high costs associated with it.

An alternative natural approach is to delegate some of the
responsibility to the SIP layer. For example, as described
in [14], parties may exchange hashes of their public keys
in the SIP layer. Then, if the SIP layer is secured, this
provides sufficient guarantees; if it is not, this serves merely
as an additional hurdle for the attacker, and the combined
protocol is still vulnerable to attacks.

More specifically, when Alice wishes to set up a secure
media session with Bob, she sends an offer in a SIP mes-
sage to Bob. This offer includes, as part of the SDP pay-
load, the fingerprint (i.e. secure collision-resistant hash) of
Alice’s certificate. Alice should utilize existing SIP secu-
rity mechanism, and send this message to her proxy over an
integrity-protected channel. If all the channels on the way
to Bob are integrity-protected, a polynomial time adversary
will not be able to compromise the security of DTLS-SRTP.

5.3 Suitability for Feature Set
In this section, we go over features discussed in Section 3

and analyze their support by DTLS-SRTP.

Forking:
Key exchange and session establishment occurs in DTLS-

SRTP in the media plane. Therefore, each responder would
establish independent key with the initiator, and key leakage
will not occur. Further, as also noted in [7] (Appendix A.24),

since key exchange is executed in the media path, error mes-
sages are also communicated along this path, and proxies
will not need to take action based on error messages. Thus,
Heterogeneous Error Response Forking Problem (HERFP)
is not applicable here either. In summary, threats associated
with forking, as described in Section 3 are not applicable in
DTLS-SRTP.

Media Clipping:
Again, since keying occurs in the media plane, user agent

applications are in full control over how to send the data (en-
crypted or not), depending on whether DTLS has completed
and keys were derived. Therefore, the problem of early me-
dia clipping, as described in Section 3 is easily avoidable by
client applications.

DTLS-SRTP signals its intent such that both peers must
support the extension before SRTP media flows between
them. In this respect, it does not result in any leak of privacy
by first sending plaintext RTP.

Re-targeting:
First, we observe that the keys will not be leaked to unin-

tended recipients since key exchange is executed end-to-end
in the media plane. Further, authenticated DTLS-SRTP
will always detect an exception in case of re-targeting, since
the credentials won’t match. Because DTLS-SRTP relies
on certificates, the initiator will have received the certificate
of the responder and will be able to identify the person to
whom the call has been re-targeted.

As an aside, to our knowledge no proposed protocol sup-
ports cryptographic delegation of authorization from Bob to
Carol. Such an authorization, for example, may be a sim-
ple specially formatted message signed by Bob, associating
Carol’s public key, delegation period, and possibly other rel-
evant information. When Carol answers the call, this mes-
sage can be attached to her PKI chain to convince Alice that
Carol is an authorized representative.

Conferencing:
DTLS-SRTP does not support establishment of a single

key shared between more than two endpoints. However, par-
ticipants can still establish DTLS-SRTP sessions individu-
ally with a conference bridge.

When Alice participates in a conference, DTLS-SRTP al-
lows her to establish secure media to the conference bridge
or entity acting as the bridge in the case of three-way calling
when a participant bridges someone into the call. Alice has
no control over whether or not media from her is encrypted
as it is sent from the bridge to other participants. Alice
also has no control over who the other participants are and
therefore to whom the media is sent (aside from being able
to choose not to participate herself).

Calls to Other Networks:
As mentioned in the discussions on forking and re-targeting,

one endpoint may not be within a VoIP network and the
SRTP terminates at a gateway to another network, such as a
switched cellular network or PSTN. The same gateway may
not be used for every call between the same two endpoints.
For such calls, DTLS-SRTP only provides establishment of
SRTP keying material between the participant on the VoIP
network and an undetermined endpoint.

Legal Interception:
DTLS-SRTP exchanges keys end-to-end in the media stream.

Unlike SDES, it does not transport the keys in signaling thus
making legal interception (or informed recording of conver-
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sation as in the case of call centers or financial transactions)
harder to support.

Session Recording:
DTLS-SRTP does not provide a general recording solution

since it does not specify the exact means by which the key
can be shared with a recording server.

6. OURMEDIA KEYING SCHEME
As discussed in the introduction, while DTLS-SRTP and

ZRTP provide strong security in establishing session keys,
they are still not widely deployed due to the complexity of
implementation and significant computation and communi-
cation costs. For simplicity and efficiency reasons, media
key is often chosen and transmitted by Alice to receiver Bob
via trusted SIP framework intermediaries. This method pro-
vides adequate security for low-value media streams.

In this section, we propose a simple and efficient way to
significantly increase the security of SIP key transmission,
with minimal additional costs. We do not resort to more
expensive public key cryptography. Our proposal involves
sending an extra key, and evaluating one Pseudo-Random
Permutation (PRP), such as AES. We believe that our pro-
tocol presents a desirable trade-off between security, costs,
and deployment complexity. It can be built directly from
SIP key transmission by adding two simple steps.

We start the presentation with discussion of some of the
weaknesses of SIP key transmission.

Key Transmission weaknesses.
We assume that both Alice and Bob are properly authen-
ticated to the SIP network. We mention obvious vulnera-
bilities resulting from corrupt SIP server node(s) – in this
scenario all security is lost since adversary sees the session
key.

However, there are subtle attacks by a relatively weak
adversary who does not have access to privileged SIP nodes.
These attacks are due to forking, which may result in the
SIP network sending Alice’s key to more than one of Bob’s
devices.

The first attack may occur in the scenario where adver-
sary is in possession of one of the Bob’s devices B1. Then,
adversary is informed of the session key by the SIP network
and can interact with Bob pretending to be Alice. (We note
that this attack is prevented in our protocol.) Note that
this is a different and stronger attack than an (unavoidable)
possibility of adversary in possession of B1 pretending to be
Bob to unsuspecting Alice.

In the second attack scenario, adversary does not have
access to Bob’s devices, but controls a portion of the media-
plane network. He is able to redirect the messages between
honest Alice’s device A1 and Bob’s two devices B1 and B2,
all of which use the same key k. Even though adversary
does not know the shared key all three devices share, adver-
sary may be able to route the messages to create unintended
transactions, even if channels are protected with k. For ex-
ample, Bob’s devices may talk to each other thinking they
are talking to Alice. Or, outside of VoIP scope, both Bob’s
devices would initiate a transaction (e.g. a money transfer),
and result in duplicate transaction execution1.

1We note that while the session encryption may be such that
such message manipulation is difficult (e.g. using special
counters), key security should not be delegated to the ses-

Finally, even if SIP servers are trusted — and it is rea-
sonable to trust the intermediaries not to abuse the knowl-
edge of all session keys — hiding the keys from them, among
other advantages, reduces the servers’ liability, consequences
of compromise, and makes system recovery easier.

DTLS-SRTP is a secure Key Exchange (KE); using SIP
with DTLS-SRTP avoids all possibilities of attacks2, includ-
ing the above weaknesses. However, this solution involves
the use of PKI. While conceptually relatively simple, PKI
systems are expensive to deploy and manage, and it is best
to avoid them. As suggested in DTLS-SRTP, a natural way
to eliminate the logistical complexity of PKI is for the par-
ticipants to transfer hashes of their certificates in the secured
SIP layer. This way, the adversary on the insecure media
plane channel would not be able to substitute the certifi-
cates, and thus the certificates can be trusted. However, this
approach fails to provide security against SIP-layer adver-
saries, who in fact can substitute the certificates and enable
man-in-the-middle attacks. We believe this is a reasonable
compromise between security and deployment and running
costs. The above non-PKI version of DTLS-SRTP is (ever so
slightly) more secure but also still significantly more costly
than our key agreement protocol described next.

6.1 Description of our solution
Our proposed solution achieves most of the security goals

achieved by the above non-PKI version of DTLS-SRTP, but
without the computation and communication complexity as-
sociated with its public-key operations.

We present a generic version of the protocol, based on
Pseudorandom Permutation Generators (PRPG). Further,
we do not fix the domains for the randomly drawn keys,
messages, and values. We only require that they are “large
enough”, according to the current suggested key lengths. To-
day, we envision using the AES encryption as the PRPG, in
which case the domains of k and r may be k, r ∈ {0, 1}128.

Protocol 1. (Secure SIP Key Transmission)
Setup: Initiator Alice wishes to securely connect to responder
Bob. Both Alice’s and Bob’s devices are authenticated to the
corresponding SIP servers.

1. Alice chooses a random key k and transmits string (Al-
ice, Bob, k) to the responder Bob via the SIP frame-
work, as it is done in the SIP key transmission method.
We stress that the transmitted key will not be the ses-
sion key that is used for communication.

2. Upon the receipt of the key, Bob chooses a random
nonce r and sends back string (Alice, Bob, r) to the
initiator Alice, together with the media stream.

3. The session key, which can be immediately used to en-
crypt the media, is the PRPG F evaluated with the seed
k on the data r. Namely, the session key is sk = Fk(r)

This protocol flow is illustrated in Figure 1.

sion, but achieved in the key exchange/transmission phase.
This would allow for better modularity and more easily un-
derstandable protocols. Further, standard proofs of security
are done in this modular world.
2The crypto core of TLS was formally proven secure [16].
However, the complete protocol suite has not been fully ana-
lyzed, and there are possibilities of errors leading to possible
attacks, such as the recent TLS renegotiation attack.
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Figure 1: Secure SIP Key Transmission

Note that, in particular, this protocol prevents more than
one instance of Bob from obtaining the session key due to
forking. This is because each Bob’s instance will choose its
own nonce, and obtain a corresponding random session key.

As with other solutions, the security of the system can be
further improved by maintaining some state between ses-
sions. That is, if honest Alice and Bob establish a key
without interference and eavesdropping, they can exchange
a long-term pre-shared key, and execute provably secure and
efficient key exchange in future sessions.

6.2 Security Analysis
In this section, we analyze security properties of our pro-

tocol and conclude that our improved method of key trans-
mission is indeed secure against relatively strong attackers.
We achieve standard cryptographic Key Exchange (KE) se-
curity properties when the adversary is restricted to operate
either in the signaling or the data plane, but not both. More
specifically, we protect against general MiTM attacks, where
the adversary may arbitrarily interfere on the corresponding
channels among the many communicating instances of Al-
ice and Bob. (Such MiTM subsumes all active attacks, e.g.,
replay.) As we aim for maximal simplicity and efficiency,
we do not provide non-essential KE features such as perfect
forward secrecy (can be easily added at the cost of running
a DH exchange), or mutual authentication – assurance that
a successful termination of KE by Alice (resp. Bob) implies
that indeed Bob (resp. Alice) participated in this protocol
(can be added at the cost of two additional “key confirma-
tion” flows and refreshing the session key). We further do
not worry about DoS attacks, and their equivalents, such as
adversary causing players outputting unrelated random keys
(this does no more harm than simply cutting the channel,
which active adversary can do anyway).

There are several definitions of security for key exchange
in the cryptographic literature. While the exact relationship
among them is often not investigated, they all guarantee
very strong security properties, including the secrecy of the
key and very general inability to mismatch players (i.e., forge
an unintended communications channel). As there does not
appear to be a KE definition for our setting, to formally
prove security, we would first need to formally define KE. It
seems easiest to do by restricting the powers of the adver-
sary in the definition of Kolesnikov and Rackoff [12]. The
full (involved) proof of security of our protocol can then be
constructed based on that of [12]. In this work, we sketch the
main points of the proof, and state corresponding theorems.

We first show that in the absence of SIP-layer adversaries,
our protocol is secure in the strong cryptographic sense.
Here, and in Theorem 2, by “secure” we mean the satisfying

above (informal, but naturally formalizable) properties.

Theorem 1. Let F be a PRPG. Assume that the SIP
network securely and privately transmits the key k chosen by
Alice. Then our protocol is a secure key exchange protocol.

As noted above, here we only present the main points of
why Theorem 1 holds. Indeed, a polynomial-time adver-
sary who observed (or even modfied in transit) r, but had
not obtained k (this is the media-plane-only adversary con-
sidered in the theorem), will not be able to distinguish sk
from a random string of the same length. This follows im-
mediately from the security properties of PRPG F , namely,
from the fact that the output of F evaluated with a ran-
dom and unknown key on any adversarily chosen message,
is indistinguishable from a random string. Further, adver-
sary will not be able to mismatch honest players (i.e. forge
an unintended communication channel), since honest Alice
instance Ai selects random ki, and each of the honest Bob’s
devices Bj (who receives some ki) independently chooses rj ;
both ki and rj are unique with overwhelming probability.
Therefore, even if the same ki is delivered to several Bob
instances (e.g. due to forking) and arbitrary r values are
delivered to Alice instances, the keys output by each player
instance will be either all independently random, or there
may be (at most) two equal keys, which would correspond
to a successful completion of the KE protocol. (We note
that a media-plane MiTM may “connect”, i.e. cause output
of the same session key, of a different Bob’s device that Alice
expects, e.g., based on the IP address. We note that this can
be avoided by additional signaling in the SIP layer, but we
do not consider this a KE vulnerability. All we guarantee
here is that if Alice establishes a channel, it is with a single
Bob’s device.)

Next, we show that our protocol is secure against a SIP
signaling-plane-only adversary. We note that this corre-
sponds to the setting where a SIP server may be corrupted,
but the attacker is unable to consistently monitor the gen-
eral Internet traffic of the parties.

For formal proof of security in one of the attack scenar-
ios covered by the next theorem, we would need to rely on a
slightly stronger than PRPG notion of security, ideal cipher.
(See Footnote 3 for high-level description of its security prop-
erties.) We envision using AES as the instantiation of ideal
cipher, as its design aims to satisfy the required properties.

Theorem 2. Let F be an ideal cipher. Assume that ad-
versary is unable to observe or interfere with (only) the pro-
tocol message sent in the media plane. Then our protocol is
a secure key exchange protocol.

We give intuition for the proof of Theorem 2. Indeed,
a polynomial-time adversary who observed k, but had not
obtained r, cannot distinguish sk from random. This is be-
cause Fk is a (known to the adversary) permutation, which,
applied to a random input, produces random output. We
note that a SIP signaling plane attacker (i.e. a rogue server)
modifies k in transit does not gain any advantage, if a“good”
pseudorandom function (e.g. AES) is used3.

3Strictly speaking, PRPG does not guarantee any security
properties if executed on related keys. Resilience to related
key attacks is modeled by assuming stronger properties on
the underlying function, in our case, AES. This assumption
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Further, adversary cannot forge an intended connection
among the players, since all Bob’s devices choose an inde-
pendently random r, which results in all of them computing
independent session keys. Alice receives r generated by one
of the Bob’s devices, and outputs either the same corre-
sponding session key, or an independently random key, in
case k was modified (here we use the ideal cipher assump-
tion). Note that SIP-layer adversary may misrepresent the
identity of Alice to Bob, hoping to cause Bob to believe he
is talking to Carol, while he is in fact talking to Alice. We
address this by including the names of both players, in order
(initiator, responder) in both protocol messages. This way,
Alice will not accept Bob’s response which includes Carol’s
name.

We stress that we use the ideal cipher assumption only for
proving claims related to active adversary in the SIP layer.
All other claims are proven only assuming F is a PRPG.

Finally, we caution the reader that colluding SIP servers
and the media-stream attackers succeed easily. It is suffi-
cient for the SIP server to leak the key k to the media-stream
MiTM to break into the conversation. However, at the same
time, attacking a non-PKI DTLS-SRTP version described in
this section requires only slightly stronger resources. There,
a SIP server simply substitutes the transmitted hash to en-
able the media-stream MiTM to perform the attack.

In conclusion, we proposed a simple, secure, and very ef-
ficient amendment of the protocol for key transmission. In
particular, our proposed amendment reduces the trust as-
sumptions on the SIP servers, and prevents instances of the
responder sharing the session key due to forking.

6.3 Suitability for Feature Set
We now discuss the applicability of our approach to the

features outlined in Section 3.

Forking: In DTLS-SRTP, keying material is exchanged
completely in the the media stream. In our proposal, the
key exchange is distributed between the signaling stream
and the media stream: the random key k is sent in the sig-
naling stream and the nonce r flows in the media stream.
When forking occurs, k remains constant for all the forked
branches, but each branch contributes a unique r, thus de-
riving a separate session key and preventing key leakage to
parties not part of the session. Similarly, HERFP does not
pose a problem since there is no key negotiation done in
signaling; the k carried in signaling is not subject to nego-
tiation. If an endpoint does not support the interpretation
of k, it will simply ignore it (following the accepted prac-
tice of handling unknown headers and attributes in Internet
protocols.)

Media Clipping: Media clipping does not pose a problem
in our approach. Key derivation is complete when A (see
Figure 1) receives nonce r. Since B will send the first media
packets, it can encrypt them using the session key (thus, no
plaintext RTP packets will be sent.) Furthermore, since the
nonce r is different for each endpoint the request forked to,
HERFP does not pose a problem for our approach.

Re-targeting: We do not formally address re-targeting.

is referred to as the ideal cipher assumption. While it is
sometimes considered too strong in theoretical cryptogra-
phy, in our scenario, it is far easier to stage a different class
of attack (e.g., intercept r in the media layer) than to exploit
the strength of this assumption.

However, we briefly sketch the possibilities to handle its sim-
ple forms.

When Alice’s UA has a good user interface (e.g. a com-
puter, or a phone with a display), SIP layer may inform
Alice that the call was sent to Carol rather than Bob, and
that would imply Carol is authorized to receive Bob’s calls.
Further, Alice’s UA may store the pre-shared key she had
shared with Bob (if this is a repeat call), and determine by
itself that re-targeting has occurred. In either of these cases,
Alice is notified of an exception, and may take correspond-
ing action. Finally, as with forking, we note that keys will
not be leaked to unintended recipients.

Conferencing: Like the other two approaches, our solution
does not allow the establishment of a shared conference key.

Calls to other networks: The security properties of calls
to other networks with respect to our approach remain the
same as the approach taken by SDES and dtls-srtp.

Legal intercept: Since r is exchanged directly between the
peers, our approach like DTLS-SRTP, does not support legal
intercept.

Session recording: Our approach, like DTLS-SRTP, does
not support session recording.

7. RELATED WORK
MIKEY [2] is another IETF standardized protocol for

keying multimedia applications. However, it has largely re-
mained unimplemented for SIP today primarily because it
is a signaling- only keying technique. ZRTP [24] is a media-
path key exchange protocol that does not use PKI (Floroiu
et al. [8] discuss ZRTP in the context of SIP in more de-
tail.) Wang et al. [21] use Identity-based encryption [19]
to exchange keys for authenticating the endpoints as well as
keying the SRTP media stream.

8. CONCLUSIONS
We have presented and proved secure a novel key exchange

method that involves only one symmetric key exchange oper-
ation by the sender and receiver. We provide security guar-
antees which are much stronger than that of SDES, and are
nearly as strong as that of DTLS-SRTP. At the same time,
our computational costs are comparable to that of SDES,
and are much less expensive than DTLS-SRTP and ZRTP,
which use public-key encryption. Table 2 provides a feature
evaluation summary of our key exchange method with the
analysis we performed also for DTLS-SRTP and SDES. We
note that our method compares well against both SDES and
DTLS-SRTP.
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ABSTRACT
Telecommunication services vary greatly in their behavior.
However they often can be decomposed into tightly-focused
components, each designed to accomplish a certain limited
function. In some cases, these functions are repeated across
many services that seem quite disparate at first glance. We
examine some components that have proven to be highly
reusable, and demonstrate how they can be composed into
a variety of interesting services.
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1. INTRODUCTION
A wide variety of telecommunication services provide fa-

miliar behavior to users everywhere. Common examples
include voicemail systems, conference calling services, IVR
“phone-tree”applications commonly employed by businesses,
and end-user features such as call waiting and three-way call-
ing. Some services of limited scope may be provided by a
standalone software implementation of modest complexity.
However, when the number of supported features increases,
they may be implemented in highly complex, even byzan-
tine, software systems. Such systems complicate the task of
maintaining and extending the service logic.

It has long been considered useful to consider models in
which system behavior can be decomposed into standalone
modules that can be independently specified, developed, and
tested. Such modules can then be combined to provide more
functionality without undue complexity [8, 9, 14, 17, 10,
21]. Such a design ethic is evident in currently-emerging
standards such as the IP Multimedia Subsystem (IMS) [19]
and the SIP Servlet 1.1 specification [11].

This paper draws on experience developing Voice over IP
(VoIP) software modules to distill a number of highly useful
software components, each performing a limited function. In
Section 2, the function of each component is described and
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illustrated by example. In Section 3, the components are
employed to compose some familiar services. Section 4 con-
tains some preliminary thoughts on different software mech-
anisms that can be used as compositional patterns, and the
appropriateness of each in different settings. We conclude
in Section 5 with a description of future work.

2. FEATURES
In this section, we will describe a number of telecommu-

nication modules that represent common functionality that
can be found in a number of different contexts. In tradi-
tional telecommunication parlance, these are designated as
features. More generally, these features embody common
design patterns of telecommunication logic. Software design
patterns have been studied extensively [7, 16, 12], and there
is a body of work concerning the use of design patterns in
telecommunications [18, 20]. The features described here ex-
hibit patterns of call-control logic. Note that although these
features can be characterized as patterns, they have also
been reified as functional, standalone software components.

Note that the increment of functionality embodied in these
features is small; the scope of an individual feature is on
the order of “call waiting,” not “IP-PBX.” A system with
a scope of the latter could be built out of a large number
of features with the scope of the former, however. This set
of features is certainly not meant to be comprehensive, but
rather illustrative of how small components can be composed
to realize a variety of outcomes.

The features described here can be viewed through the
lens of scope, commonality, and variability [6], though these
decompositions are the result of informal iteration rather
than systematic procedure. Encounters with repeated call-
control patterns have suggested the scope of each feature.
The commonality between instances of the features is gen-
erally dictated by the call processing message classes being
acted upon (either sent or received); and the variability usu-
ally applies to parameters used to form the details of the
message contents, rather than the message classes. Gener-
ally these parameters take the form of addresses, timeout
values, etc.

Each of the features is described in isolation below. Then
we will consider how to compose these features into useful
services using pipe-and-filter composition [2, 10, 13]. This
style of composition allows all components (features) to re-
main independent of the others; in fact the components may
not even be aware of the existence of other components. The
graph that results from the runtime composition of multi-
ple features may be achieved by direct addressing, in which
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Figure 1: Prompt-and-Switch feature

features translate addresses in order to route calls to other
features, or through a more sophisticated subscription mech-
anism, as in Distributed Feature Composition (DFC) [10].
In either case, the mechanics of composition are achieved
through telecommunication protocol means, with no changes
required to feature logic. Call-time composition is also used
in IMS [19] and the SIP Servlet 1.1 specification [11]. Note
than anywhere that a call party appears in the representa-
tion of a feature call flow, that party may be another fea-
ture, not necessarily an end user. From the vantage point of
a feature, it does not know or care what entity is placing or
receiving a call.

2.1 Prompt and Switch
The Prompt-and-Switch (PS) feature, shown in Figure 1,

provides the ability to answer an incoming call with an auto-
mated audio dialog as commonly found in Interactive Voice
Response (IVR) systems. After a period of time during
which the calling party interacts with the automated dia-
log, the logic of the IVR system can specify an address to
which the calling party should be switched. This function
should be very familiar to anyone who has called the main
number of a business, only to encounter an automated menu
listing the parties (or departments) that can be reached via
an interaction with the menu. This feature takes care of the
required signaling to redirect the call to the IVR system,
as well as any further signaling required to tear down the
IVR call and switch the (connected) caller to a new (uncon-
nected) address.

As presented, this feature could perform a number of fa-
miliar standalone functions:

• It can provide an“automated attendant”function, prompt-
ing the caller with a menu of departments that can be
reached.

• It can be the basis of a prepaid calling service, where
calls are placed to an IVR system to collect a prepaid
account number and desired number to call. When the
called party hangs up, the caller is reconnected to the
IVR system and allowed to make more calls.

Connect Two 

Parties
callee1 callee2

initiator

1

2 3

Figure 2: Connect-Two-Parties feature

• It can support “remote authentication,” where sub-
scribers call in and authenticate themselves before be-
ing allowed access to some protected functions (in-
cluding placing an outbound call). Such a function
is present in AT&T’s Callvantage Service [4].

Figure 1 shows a graphical representation of this feature.
The incoming call, labeled (1), is directed to the IVR system
(2). The IVR system returns a command (3), causing the
feature to switch the caller to an address specified by the
IVR logic (4).

In terms of [6], the commonality is as described above.
One element of variability in the call-processing logic is that
the feature may be optionally configured to detect call ter-
mination from the callee and to reconnect the caller to the
IVR system for further instructions. This behavior could
be used to allow a caller to make multiple sequential calls
after entering a prepaid calling card number or performing
remote authentication.

2.2 Connect Two Parties
While a great many features are activated by an incoming

call, there are occasions where the initial event is something
other than a call-related event. An example of this would be
a corporate web page with a button that reads, “Click here
to be connected to one of our representatives.” In this case,
the initiating event would be a web click, not a call event.
This function can be implemented in a Connect-Two-Parties

(CTP) feature that is activated by the non-call event, as
shown in Figure 2.

The initiating event must specify the addresses of the two
parties that should be connected. To reduce confusion, it is
desirable that the parties be connected one-at-a-time; that
is, the second party will not be called until the first party
answers. Accordingly, execution should terminate if the first
leg of the call fails.

Figure 2 shows a graphical representation of this feature.
A non-call event (1) prompts the CTP feature to place out-
going calls to first one party (2), then the other party (3).
These parties are located at addresses that are specified in
the initiating event.

Note that the endpoints of this call need not both be live
people; rather they can be any callable entity, including me-
dia servers and other features.

2.3 Redirect on Failure
The Redirect-on-Failure (RF) feature provides a simple

but crucial capability: it continues an incoming call toward
its destination, but in the event that the call cannot reach its
destination for any of a variety of reasons (busy, no answer,
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network error), this feature does not propagate the failure
back to the calling party. Instead, it continues the call to a
different address, which may be explicitly specified through
provisioning, or may be algorithmically determined based on
the addresses of the parties in the call. The basic functional-
ity may be enhanced by the optional ability (variability) of
only redirecting for certain classes of failure responses, and
otherwise propagating the failure back to the calling party.

The canonical use of this feature is to redirect a failed
call to a resource that will record a voicemail message for
later retrieval by the initial called party. Another use is to
provide a “Safe Forwarding Number” in case of failure from
an endpoint [4].

Figure 3 shows a graphical representation of this feature.
An incoming call (1) is continued toward its destination (2).
A failure response from callee1 (3) causes the RF feature to
continue the original call to callee2 instead (4).

2.4 No Answer Timeout
The ability to detect call timeouts is important in a vari-

ety of contexts. A familiar example is the redirection of an
incoming call to a voicemail server after a specified “Ring
No Answer” timeout. However the ability to detect and act
upon such timeout conditions is more general and can be
used in other contexts, as we will see below. Therefore a
simple No-Answer-Timeout (NATO) feature which detects
such a condition and can signal its occurrence to other par-
ties can be valuable. A failure response may be the mecha-
nism it uses to signal the outcome to other components.

No graphical representation should be necessary for the
understanding of this feature. It works with a calling party
and a called party, and behaves transparently unless the
no-answer condition is satisfied, in which case it ends the
call to the called party and signals the calling party of the
condition.

3. SERVICES
This section discusses services, by which we mean a group-

ing of features used to accomplish a task of interest. Infor-
mally, a service represents a unit of functionality that could
be marketed and sold. The functionality of each example
service will be described, and a possible implementation us-
ing pipe-and-filter composition of the preceding features will
be presented.

These services can be viewed as products in a software

product line [15]. In this context, the set of features pre-
sented in Section 2 comprise the platform; customization for
individual products occurs through the selection and relative
arrangement of the appropriate features from the platform

as well as parameter-based specialization of those features.

3.1 Conference Calling Service
A typical business-oriented Conference Calling Service op-

erates as follows. A user calls a well-known address (the
bridge number) and interacts with an IVR system to pro-
vide details about the conference that the user wishes to join.
This information often takes the form of a personal identifi-
cation number (PIN) for the desired conference. Upon suc-
cessful entry of this information, the user is switched into a
conference call, in which the media streams from all users
are mixed.

The core of such a service can be realized through the use
of a PS feature for initial PIN processing in conjunction with
a media server to provide the media mixing after successful
completion of the IVR dialog. In addition, a capability could
be added to enable users to connect to the conference via
clicking on a web link instead of dialing the phone. This
can be enabled through the introduction of a CTP feature
to call out to the user and then connect the user to the IVR
system.

Figure 4 shows an architectural diagram of the service,
composed of the individual features.

3.2 Voicemail/Do Not Disturb Service
A Voicemail service is used to capture incoming calls when

the intended recipient is not available. The two common
cases that result in voicemail treatment for a call are when
the called party is busy or when there is no answer. Either
of those conditions, as well as various network failure condi-
tions, can be viewed a failure, so the use of the RF feature
is natural. The NATO feature can be employed to generate
a failure response when the no-answer condition is detected.

Do Not Disturb treatment is intended to reduce or elim-
inate unwanted incoming calls to a user. The simplest im-
plementation rejects all calls while active. A less draconian
form may use a blacklist (or whitelist) approach, where a
list of addresses is deemed as undesirable (or desirable), and
calls from those addresses are consequently rejected (or ac-
cepted), while all others are accepted (or rejected). Rejected
calls may be redirected to a voicemail system.

A more sophisticated implementation may include a no-
tion of a graylist, indicating that the caller is required to
interact with an IVR system before the decision is made
as to whether or not the call can “ring through.” It is this
version of the service that we describe in this section.

Figure 5 shows an architectural diagram of the service,
composed of the individual features. The presence of an IVR
system with conditional switching based on the outcome of
the IVR dialog suggests the presence of a PS feature. Note
that the NATO feature is not adjacent to the RF feature,
as it might be for a pure voicemail service. In this case, the
NATO feature should not be invoked until the IVR system
has determined that the caller is authorized to ring through.
This dictates the placement of NATO between the PS fea-
ture and the callee. Now three different conditions can cause
the RF feature to send the caller to voicemail:

• Call rejection from Do Not Disturb logic

• Failure response from callee (e.g., busy condition)

• No answer from callee
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The RF feature, which sends the caller to the voicemail
system, is not concerned with which of these conditions has
occurred. Its role is the same, regardless of what has hap-
pened in the rest of the call path. This is the essence of
modularity.

3.3 Record and Send
The Record and Send service permits a subscriber to record

a message which will then be automatically delivered to a
list of addresses via an outbound call. Such a service can
be used for event reminders (“Don’t forget to vote in today’s

school elections”) as well as timely notifications (“Today’s

lacrosse game is cancelled due to poor field conditions”). The
subscriber could possibly set up the service over an IVR ses-
sion, but the complexity of managing a list of addresses to
notify lends itself to a visual medium, such as a web inter-
face. This variation is described in this section.

To use the service, the subscriber logs into a service web-
site. A list of addresses may be maintained between ses-
sions, so that certain addresses may be selected from a list
of previously-used addresses (or from an address book); new
addresses can be added as required. Once the list is com-
plete, the subscriber indicates whether the notifications should
be made right away, or at a scheduled time. Finally, the
message must be recorded. When the subscriber chooses to
record, the web server can send a request to a CTP fea-
ture to connect the subscriber and an IVR dialog which will
prompt the user to record the notification message. This
is in case the link is clicked in error when the subscriber is
not near the telephone, and this prevents the device ring-
ing again and again, when under normal circumstances the
subscriber should be able to answer quickly. This can be

provided via the NATO feature on the leg of the call going
to the subscriber.

Once the outgoing message has been recorded, the service
logic can place calls to the specified list of addresses, once
again via a CTP feature. Each instance of the CTP feature
will connect one notification address with an IVR dialog in
order to play out the message. The service could do these all
in parallel, or could stagger them in time in order to meet
resource constraints. Such a decision has no affect on the
logic of the features. A Ring Stopper can be employed if
desired on the outgoing calls.

Figure 6 shows an architectural diagram of the service,
composed of the individual features.

Note that the initial Connect-To-Recorder function can be
reused in other contexts. Voicemail systems typically allow a
subscriber to record an outgoing message that will be played
to callers when the subscriber is unavailable. Sometimes
there are multiple outgoing messages, each to be played
when certain conditions are met (subscriber does not an-
swer, subscriber is on the phone, etc.). The user interface
employed to record these messages is typically an IVR sys-
tem which is used to manage all aspects of the voicemail
service, including message retrieval and management of set-
tings such as the number of rings allowed before redirection.
As such, the functions used to record outgoing messages are
typically located within a fairly complex IVR dialog.

There is a trend, particularly for VoIP systems, for provid-
ing web-based interfaces to voicemail systems in addition to
the traditional IVR interface. These web interfaces typically
allow access to recorded messages, as well as to configura-
tion options. By converting the serial presentation of an
IVR dialog to a visual presentation, usability can be greatly
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enhanced. Some systems, such as AT&T’s CallVantage Ser-
vice, allow the user to click a link on this web interface in or-
der to record an outgoing message. When the link is clicked,
the subscriber’s phone will ring; when the call is answered,
the subscriber is placed precisely at the point in the IVR di-
alog where the greeting is recorded. This allows the use of a
web browser for viewing and choosing configuration options,
coupled with the use of the telephone as a ubiquitous audio
input device.

Since the IVR component is presumed to exist already,
the web-based greeting recording function can be added us-
ing the same Connect-To-Recorder composition shown in
Figure 6.

4. OTHER COMPOSITIONAL PATTERNS
The previous section illustrated the creation of service

logic through pipe-and-filter composition. This design pat-
tern is well known in software engineering, and can be seen
in Unix process pipelines, data processing, and web devel-
opment frameworks [2, 1]. The Distributed Feature Com-
position (DFC) architecture [10] employs the pipe-and-filter
architecture to great advantage in controlling feature inter-
action. By proper use of address translation [22], a variety of
DFC usages, each containing an appropriate feature chain,
can be assembled. DFC provides a theoretical basis that can
be used for realizing composed services, like those in the pre-
vious section. By having a toolbox full of general features,
services can be easily composed by manipulating addresses
and feature subscription, instead of writing new code.

However, pipes and filters are not the only mechanism for
software re-use. Perhaps the most common software re-use
mechanism is that of a software library made available to
applications via a documented API. Software libraries are
routinely used during almost any software development pro-
cess. Some of the functions defined in the preceding sections
could also be implemented as library modules.

There are differences in the patterns of re-use between
composing complete feature modules, as discussed in Sec-

tion 3, and using software libraries. One key difference is
that feature composition occurs at runtime, and library com-
position occurs at compile time.

There are tradeoffs associated with these two patterns of
re-use. For example, use of a software library may well
have less overhead associated with a call to a library rou-
tine than with the instantiation of a feature instance and
the overhead of having more call protocol instances to man-
age. Compile-time checking could also ensure that the func-
tion is being invoked from an appropriate context. On the
other hand, run-time assembly of the software components
means that no recompilation is required to change behavior.
This means that the software composition can be controlled
purely through configuration of the desired call graph.

In practice, it may not be clear which of these composi-
tional patterns is more suitable for a particular implemen-
tation. Some experiences indicate that pipe-and-filter com-
position may be most appropriate when designing a new
service for the first time, as this level of composition can
be achieved through configuration rather than code changes
[5]. When an implementation is more mature and stable,
it may be desirable to migrate certain functions to library
routines. This can potentially improve performance charac-
teristics of the system as a whole, presuming that calling a
library routine is less computationally expensive than per-
forming the incremental call processing that would be re-
quired for a standalone feature. A good rule of thumb may
be that if a component needs to create or absorb call-path
messages in order to perform its function, it should be real-
ized in a feature, not a library routine. There are at least two
justifications for this design rule. First, if one component is
linked to another at compile time, it prevents run-time in-
terpolation of a third component between the other two and
thus constrains flexibility for re-use. Also, inter-feature mes-
sages are a critical mechanism for analyzing and controlling
feature interaction.

5. FUTURE WORK
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Extensive experience building VoIP services has resulted
in the extraction of common call-control patterns into the
features described in this paper. There is every reason to ex-
pect that further experience will result in continuing insights
into interesting decompositions. Investigation of systematic
techniques such as [6] could yield new insights. The appli-
cability of software product line engineering techniques [15,
3] to this domain should be explored.

Additionally, the thoughts on alternate compositional pat-
terns are in the early stages. Other compositional patterns
from the software engineering literature [2] should be ex-
plored for possible applicability to this domain. Further
reflection and experience should lead to more concrete and
rigorous design guidelines.

Finally, the topic of converged services has not been di-
rectly addressed in this paper. When non-telecommunication
protocols (such as HTTP) are included as part of the service
logic, the boundary lines of features, and thus compositional
patterns, may shift.

6. CONCLUSION
By carefully designing telecommunication features to per-

form certain common functions, it is possible to realize com-
plex service logic through call-time composition of the con-
stituent features. There is growing industry momentum for
such mechanisms as seen in the IMS architecture and the
SIP Servlet 1.1 standard.
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ABSTRACT
A back-to-back user agent (B2BUA) is a powerful mecha-
nism for realizing complex SIP applications. The ability to
create, terminate, and modify SIP dialogs allows the cre-
ation of arbitrarily complex services. However, B2BUAs
must be designed with care so as not to disrupt service in-
teroperability. A commonly-stated goal is for B2BUAs to be
as transparent as possible while achieving its design goals.
Though the notion of transparency is intuitively appealing,
it is difficult to define. To address this issue, this paper
proposes a definition of transparency and presents a formal
model of a transparent B2BUA to serve as the specification
of transparency. From this specification, we identify issues
with both the realizability and desirability of this behavior,
and suggest modifications to the original model. We evalu-
ate the behavior of a number of public B2BUA implementa-
tions via testing, using some novel techniques to create test
cases based on the formal models.

1. INTRODUCTION
A back-to-back user agent (B2BUA) is a powerful mecha-

nism for realizing complex SIP applications. The ability to
create, terminate, and modify SIP dialogs allows the cre-
ation of arbitrarily complex services. However, B2BUAs
must be designed with care so as not to disrupt service in-
teroperability.

A commonly-stated goal is for B2BUAs to be as transpar-
ent as possible while achieving its design goals. However,
the notion of transparency is not defined by the SIP speci-
fication [13]. This specification defines a back-to-back user
agent as “a logical entity that receives a request and pro-
cesses it as a user agent server (UAS). In order to determine
how the request should be answered, it acts as a user agent
client (UAC) and generates requests.” The specification fur-
ther states that “Since it is a concatenation of a UAC and
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UAS, no explicit definitions are needed for its behavior.”
To date, the behavior of B2BUAs has not been specified,

other than that it must comply with the behavior of a UA
on each side. This leads to the perception that B2BUAs
break transparency of the network, and therefore hinders
innovation at the endpoints. On the other hand, a large
number of use cases have arisen in real-world deployments
of SIP services that require B2BUAs. For example:

• Hide network topology information. This is often per-
formed by Session Border Controllers (SBCs) that in-
terface the networks of two service providers.

• Terminate an existing session, for example by a pre-
paid application when calling credit has run out, or by
an IMS P-CSCF when it detects that the radio linkage
with the mobile device has been disconnected.

• Modify the Session Description Protocol (SDP) infor-
mation in the message body, for example to work through
firewalls.

• Perform third party call control by advanced applica-
tions, for example to change a direct two-party call to
a three-party call by bringing in a mixing media server.

The conflict between common usage and lack of specifi-
cation is untenable. It is important that the behavior of
B2BUAs is specified such that developers can implement
them correctly and service providers can test them for com-
pliance. At the same time, any innovations and extensions
to the SIP protocol can be designed to work with transpar-
ent B2BUAs as intermediaries. While a transparent B2BUA
does not provide any useful service, it can serve as the base-
line and various B2BUAs that provide services can be de-
fined as deviations from the transparent B2BUA. For ex-
ample, a prepaid application B2BUA is transparent except
when it terminates the session by sending BYE requests on
both SIP dialogs.

In 2007, the IETF SIPPING working group started to
work on a Best Current Practices document for a transpar-
ent B2BUA. Unfortunately, this work has not been contin-
ued to completion. The last draft [11] specifies how the
Allow, Required and Supported headers should be handled
when a request is received. It also specifies that when the
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B2BUA relays a message certain headers should be gener-
ated, and the other headers and message body should be
copied.

The SIP Servlet API standard [1] provides limited support
for B2BUAs by providing methods for creating an outgoing
request to be sent out on the UAC side based on an incoming
request received on the UAS side. It specifies that the imple-
mentation must copy the headers from the incoming request
to the outgoing request (with a few exceptions). However,
the SIP Servlet API standard does not further specify any
transparent B2BUA behavior.

The purpose of this paper is to provide a firmer foundation
for B2BUAs in SIP by providing a rigorous and pragmatic
specification of transparent behavior. This entails a number
of contributions.

First, we show that it is difficult to define what ”trans-
parency” means, even on an informal and intuitive basis.
After examining the alternatives, we settle on a pragmatic
working definition (Section 2).

Second, we formalize our informal definition (Section 3).
Message sequencing is formalized in terms of an executable
model in Promela, the language of the Spin model checker.
Message contents are described in terms of header values.
To provide an environment in which the B2BUA model can
be analyzed and verified automatically, we also developed
new formal models of SIP user agents. Because of the use of
model checking, all of the Promela models are guaranteed
to be complete, consistent, unambiguous, and correct with
respect to well-defined criteria.

Third, we demonstrate the pragmatic use of our specifi-
cation by evaluating existing B2BUA implementations (Sec-
tion 4). Because manually generated tests are not sufficient,
we generated a suite of 2,408 tests automatically from the
formal UA models. We then ran both manually and auto-
matically generated tests, using automated testing tools, on
the available implementations. None of the implementations
comply fully with the B2BUA specification. This shows that
implementing a correct B2BUA is difficult, and that com-
prehensive testing is necessary to ensure the correctness of
implementations.

Overall, this research shows that judicious use of specifi-
cation, analysis, and testing tools can greatly improve the
quality of SIP components and SIP-based applications. Al-
though our research needs to be extended in various ways,
further work is amply justified by the initial results.

2. DEFINITION OF TRANSPARENT
BEHAVIOR

What does it mean for a B2BUA to behave transparently?
Transparency is an appealingly intuitive concept, but it is
not easy to give it a rigorous definition.

In general, there are two approaches to definition. An
operational definition of transparency would focus on the
behavior of the B2BUA itself. An observational definition
would define transparent behavior of a B2BUA as observed
by its environment, which consists of the UAs at the far
ends of its two dialogs. The advantage of an operational
definition is that it is easy to tell whether a specific B2BUA
satisfies the definition. One advantage of an observational
definition is that it corresponds most closely to the intuitive
notion of transparency. Another advantage is that it allows
the most freedom in implementing B2BUAs.

In this paper, pure propagation refers to the following be-
havior of a B2BUA: receive a message in one dialog, and send
it unchanged in the other dialog. A possible operational def-
inition is, “A transparent B2BUA applies pure propagation
to each received message, and does not send any messages
that are not propagated.”

Pure propagation cannot be correct transparent behav-
ior because a B2BUA must change propagated messages in
straightforward ways, such as modifying the Call-ID header
and tag parameters to match the unique identifiers of each
dialog. These changes to message content are specified in
Section 3.2.

In this paper, propagation as a B2BUA behavior is the
same as pure propagation, except with necessary header
changes. A revised operational definition is, “A transpar-
ent B2BUA applies propagation to each received message,
and does not send any messages that are not propagated.”
This definition does not work either, because it sometimes
violates the SIP standard in the individual dialogs. Sec-
tion 3.1.3 describes these situations.

Unfortunately, a rigorous observational definition is even
harder to find than an operational definition. It could re-
quire that the presence of the B2BUA be undetectable by
the far endpoints, but that is not achievable, even when
real-time delays and header changes are excepted (see Sec-
tion 3.1.3).

An observational definition should require that the me-
dia sessions between the far endpoints be the same whether
there is a B2BUA present or not, because controlling media
sessions is the primary purpose of SIP. To formalize this suc-
cessfully, it would be necessary to define “the same” so that
it generalizes over the nondeterministic behavior of the net-
work between the far endpoints, which can affect endpoint
behavior and media sessions even when there is no B2BUA.
Also, a definition of transparency based on media sessions
would be necessary but not sufficient—SIP signaling accom-
plishes more than just controlling media sessions.

In this paper we use a pragmatic definition of transparency
that lies somewhere between the two extremes. A B2BUA
is transparent if and only if:

• It acts as a standards-compliant UA in both dialogs.

• Its behavior within the two SIP dialogs is to propa-
gate each message, and to not send any messages that
are not propagated, except when this behavior would
violate the protocol in either dialog.

• When its behavior is an exception to the basic rule, its
behavior minimizes the effect of its presence between
the far endpoint UAs.

The first two points are operational and precise. The third
point is observational and rather vague.

We feel that this definition, despite its flaws, has enabled
us to make progress toward understanding transparency. We
regard it as an interim result, to be replaced in the future
by a more precise observational definition.

3. SPECIFICATION OF TRANSPARENT
BEHAVIOR

Our study covers the basic version of SIP defined in RFC
3261 [13], plus info [3] requests. Info requests allow application-
level mid-call signaling without affecting dialog state, and
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are used extensively for PSTN–SIP interworking and media
server control.

3.1 Message Sequencing

3.1.1 Method of Study
Message sequencing is an aspect of behavior. It is con-

cerned with when a user agent can or must send a message,
and what messages a user agent might receive at any given
time. We study message sequencing by means of formal
modeling and analysis.

In the sequencing view a message is identified primarily by
a type, which is a member of an enumerated set. The request
types within our scope are invite, ack, cancel, info, and bye.
The possible responses to these requests are categorized in
an enumerated set according to the level of detail needed.
For example, the possible responses to an info request are
categorized as infoDVR or infoRsp.

The infoDVR category consists of 408 (Request Timeout)
and 481 (Call/Transaction Does Not Exist) messages in re-
sponse to an info. The name stands for Dialog Vanished
Response, because both of these indicate that the dialog is
gone. The infoRsp category consists of all other responses,
whether successful (200) or failing (3xx-6xx). In the models,
there is a need to distinguish between DVR responses and
all other responses, because they are handled differently by
the models. There is no need to distinguish between suc-
cessful responses and other failing responses, because (from
the perspective of our models, see Section 3.1.2) they are
simply passed to the user.
Secondarily, messages that can carry SDP are categorized

as carrying offer, answer, or none in their SDP fields. All
other aspects of message content are discussed in Section 3.2,
and are not included in the sequencing models.
In a previous study [18], we used formal modeling in the

Promela language and verification with the Spin model checker
[7] to investigate invite dialogs in SIP. We wrote nondeter-
ministic models documenting all possible behaviors of the
two user agents (caller UA and callee UA) during an invite
dialog. To validate the models with respect to the RFCs,
we included pointers to those documents. We used a suite
of formal analysis and verification techniques to ensure that
the models were complete and consistent according to spe-
cific definitions of those terms. We also wrote a large number
of in-line assertions expressing our assumptions and under-
standing of the protocol, and verified automatically that the
model was correct according to those assertions. These val-
idation and verification techniques are described in detail in
[18].
Our study of B2BUAs builds on this previous work. First,

we improved our UA models in various ways. The endpoint
UAs are the environment of a B2BUA, so they must be
understood as well as possible. Most importantly, we added
UA failures as manifested by 408 and 481 messages.
The new models are described in Section 3.1.2, and are

available on the Web [5]. Some readers may be surprised
at their complexity—the original intent was for SIP to be a
“simple” protocol, but simplicity is long gone, even for the
basic version studied here. The important point is that,
faced with this unavoidable complexity, we must take ad-
vantage of available technology such as model checking to
help us deal with it.
Our specification of transparent behavior of a B2BUA also

takes the form of a Promela model. Unlike the UA models,
it is a deterministic program, prescribing exactly what the
B2BUA should do in each circumstance. It has been sub-
jected to all the same analysis and verification activities as
the UA models. This means that it is guaranteed to be com-
plete, consistent, and unambiguous. It is also guaranteed to
preserve a large number of correctness assertions evaluated
at control points within the UA and B2BUA code.

The B2BUA model (in two versions) is described in Sec-
tions 3.1.3 and 3.1.4, and is available on the Web [5].

3.1.2 The User-Agent Models
We assume that message delivery is reliable and FIFO in

each direction, because without this assumption a number
of significant new problems arise [18].

The UA models are more complete with respect to RFC
3261 than our previous models. They include early media,
408 and 481 messages, and timeouts in the callee UA wait-
ing for an ack to a successful initial invite. In the modeled
behavior, failure of one UA is detected when the failed UA
does not respond to a request from the live UA. Simultane-
ous failure of both UAs is not represented, however.

Because our primary goal is to help people program B2BUAs,
SIP is modeled from the viewpoint of the transaction user in
RFC 3261. According to RFC 3261, 100 (Trying) messages,
retransmissions, and acknowledgments after invite failures
are all handled exclusively by a lower-level transaction layer
of the protocol stack. This means that they need not be
present in our models.

As mentioned previously, the UA models are highly non-
deterministic. There are four major causes of nondetermin-
ism. First, nondeterminism can reflect user choice. For ex-
ample, after sending an initial invite, a caller UA can choose
to send a cancel message or wait for the response to the in-
vite. Second, nondeterminism can represent the possibility
of failure. Whenever a UA is due to respond to a request,
the UA model can send the request or else fail. Third, non-
determinism can reflect concurrency. The two UAs and mes-
sage channels between them are distributed and largely in-
dependent, so their events can be interleaved in arbitrary
ways. Fourth, nondeterminism can reflect implementation
freedom. For example, on receiving a cancel message when
it has not yet responded to the initial invite, a callee UA
must send both a 200 response to the cancel and a failure
response to the invite. The order is not specified, however,
so the model has a nondeterministic choice between the two
orders.

We have made every effort to read RFC 3261 closely and
interpret it correctly, but this is difficult to do because the
RFC is informal, incomplete, and vague in many places. Our
formal models have precise semantics and are guaranteed to
be complete; they are organized so that a specific answer
to a specific question is always easy to find. With the help
of the SIP community they can be improved until they are
declared correct by consensus, at which time they can serve
as valuable appendices to the RFCs.

In the remainder of this section we discuss some specific
aspects of UA behavior that are important for B2BUA be-
havior.

During a confirmed dialog, either UA can send an invite
message to alter the session description (specification of the
media channels). Because there is only supposed to be one
such re-invite transaction at a time, a re-invite race occurs
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if both UAs re-invite at about the same time.
A typical re-invite race is shown in Figure 1. Each UA

knows there is a race as soon as it receives invite after send-
ing invite. Each UA responds with inv491 (a 491 message
in response to an invite), so that both re-invite requests fail.
Although each UA is free to try again at a later (and differ-
ent) time, our models do not show any relationship between
the earlier and later re-invites.

invite invite

inv491 inv491

Caller UA Callee UA

Figure 1: A re-invite race.

On receiving any invite (initial or re-invite) message, a
UA need not respond immediately. This provides time for
the UA to get instructions from a human user if necessary.
In the models, a UA receiving an invite goes into an invited
or reInvited state. In these states the UA can send or receive
other messages. At any time, however, it has the choice to
send a final response to the invite.

An invite transaction can take two forms with respect to
the offer/answer exchange [12]. These two forms are illus-
trated in Figure 2 by re-invites from the callee UA. On the
left, the invitemessage carries an offer and the inv200 carries
an answer. On the right, the invite message does not carry
an offer, but rather solicits an offer from the other UA. In
this form the inv200 carries the offer, and the ack message
carries the answer.

On the left, the caller UA leaves the reInvited state after
sending inv200, even though it has not yet received the ack.
Because the offer/answer exchange is complete, even before
receiving the ack it can send a new invite message to begin
a new re-invite transaction [12].

Any time after sending the initial invite and before re-
ceiving a final response to it, a caller UA can send cancel to
cancel the transaction and abort the dialog. A cancel race
occurs if the cancel message arrives at the callee UA after
the callee UA has sent a final, successful response to the
invite.
A typical cancel race is shown in Figure 3. The caller

UA knows there is a race as soon as it receives inv200 (a
200 message in response to an invite) after sending cancel.
Having failed to cancel the initial transaction, it ends the
dialog by sending a bye instead. Later it receives canc200
sent by the callee UA.
For all requests, a DVR response in the model corresponds

to either a 408 or 481 response. In the models, a failing
UA sends a DVR response and then enters a state in which
it no longer communicates except to send additional DVR
responses.
This modeled behavior corresponds quite closely to the

actual behavior of a UA that fails and restarts, having lost
dialog state. The restarted UA will respond to all subse-
quent requests for that dialog with 481 messages.
The modeled behavior corresponds more loosely to the

cancel

invite

inv200

ack

bye

bye200

Caller UA
Callee UA

canc200

Figure 3: A cancel race.

actual behavior of a UA that fails and does not restart. In
this case, obviously, the dead UA does not send any mes-
sages. Rather, the transaction layer of the live UA generates
a 408 response for the transaction user to see. Thus a UA’s
sending 408 messages at and after failure is a modeling trick
ensuring that one UA gets 408 responses when and only
when the other UA has failed.

On receiving a DVR response, a UA that has not already
sent a bye is supposed to send a bye. This causes two dif-
ficulties in the callee UA. First, the callee UA can receive
a 408 or 481 response to an info message when it is still in
the invited state and cannot legally send a bye. In this case
we have the callee UA send a failure response to the initial
invite.

Second, the callee UA can receive these responses to info
requests when it has already sent an inv200 for the initial
invite but has not yet received the corresponding ack. It
cannot legally send a bye in this case, either. It becomes
blocked until it receives an ack or ack timeout, at which
time it sends the bye.

Modeling reveals that a queue of messages in transit from
one UA to the other can grow to size 7 (even though the
model allows only one provisional response and only one
outstanding info request). In this unusual scenario, one UA
generates the message sequence inv200, invite, info, bye and
then is suspended for a long interval. During this interval
the other UA receives the 4 messages and processes them to
generate the following sequence: ack, inv200, infoRsp, info,
invite, bye, bye200. Of these 7 messages, 4 are responses to
the 4 queued messages, and 3 are new requests.

3.1.3 The Back-to-Back User Agent Model
Our model of a back-to-back user agent is a deterministic

Promela program that acts as a callee UA in one dialog and
a caller UA in another. It is proposed as a specification of
correct transparent behavior.

Whenever possible, the transparent B2BUA reacts to re-
ceiving a message from one dialog simply by propagating
it. The remainder of this section discusses the situations in
which this is not possible, and how the B2BUA can deal
with the situation safely.

A typical re-invite race is shown in Figure 4. When the
B2BUA receives an invite from the right, it cannot forward
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reInvited

confirmedconfirmed confirmed confirmed

reInviting

confirmed

confirmed

reInviting

confirmed

confirmed

ack, answer

inv200, offer

invite, noneinvite, offer

ack, none

reInvited

inv200, answer

Caller UA Callee UA Caller UA Callee UA

Figure 2: Two ways the callee UA can re-invite, with local states of the UAs shown. These transactions can
also be initiated symmetrically by the caller UA.

it to the left, because it would violate the SIP protocol in
the leftmost dialog by knowingly creating a re-invite race.
Because it knows that there is a race, it generates an inv491
response instead. After that point it can resume propagation
of messages.

As a result of the presence of the B2BUA, the endpoint
caller UA on the left receives inv491 without having received
a racing invite—something that could never happen in a
simple dialog. This illustrates the point that “transparent
behavior” cannot be defined as “undetectable behavior.”

In Figure 4 the B2BUA absorbs a request (rather than
propagating it) and generates its own response to the re-
quest. This deviation is benign for two reasons: (1) if the
B2BUA had propagated the request, the request would not
have changed the state of the UA that received it; and (2)
both endpoint UAs receive the same responses to their re-
quests as they would have received without the B2BUA.

A B2BUA can never simply propagate cancel requests,
because cancel requests are “hop-by-hop”. On receiving a
cancel from the left, a B2BUA must immediately generate
a response in the leftmost dialog. If the B2BUA also sends
a cancel to the right and receives a response from the right,
then the B2BUA must absorb the response. This behavior
is shown in Figure 5.

In one form of cancel race, cancel and inv200 messages
cross in the left dialog. This means that the B2BUA re-
ceives the cancel after it has already propagated inv200 to
the left, so that the dialog on the left of the B2BUA looks
like Figure 3. There is no point to propagating cancel to the
right, and it would also be illegal to do so because the dialog
to the right has been confirmed. The B2BUA must simply
absorb the cancel and generate canc200 as a response.

Cancel races detected on the right of the B2BUA do not
require a transparent B2BUA to behave differently than in
Figure 5. If the cancel arrives at the callee UA too late, then
the calle UA may have already sent inv200. As with invFail
in Figure 5, the B2BUA simply propagates inv200.

The B2BUA can receive a request (for example a re-invite)
from a dialog after it has received a bye from the other dia-
log and propagated it to the requesting dialog, as shown in
Figure 6. If the B2BUA were to propagate the new request
(in Figure 6, to the right), it would be sending a new request

in a dialog that has already seen a bye. In our opinion this
is clearly wrong and should be illegal, although we cannot
find a specific prohibition in RFC 3261. Instead of propa-
gating the invite, the B2BUA should absorb it and generate
invFail. If the B2BUA had propagated the invite, it would
have had no effect on the state of the callee UA.

B2BUA
bye

byeinvite

invFail

Caller UA Callee UA

Figure 6: A late request arrives at a B2BUA.

Similarly, the B2BUA cannot propagate a provisional re-
sponse by sending it in a dialog that has already seen a
bye. In this case the B2BUA absorbs the message without
generating any other message.

3.1.4 A Modified B2BUA
The pure B2BUA described in Section 3.1.3 propagates

messages whenever propagation is legal. Unfortunately, it is
a specification that cannot be implemented in a SIP Servlet
container. The reason is that the SIP Servlet standard [1]
mandates handling cancel requests in a different and less
transparent way.

Because of the importance of the SIP Servlet containers
as platforms for SIP applications, we provide a modified
model to serve as an alternative specification of a transpar-
ent B2BUA. The modified specification is compatible with
the SIP Servlet standard.

Figure 7 shows how the modified B2BUA handles a cancel.
Provided that the cancel is not too late in arriving at the
B2BUA (see Figure 3), the B2BUA immediately generates
invFail to the left, ending that dialog. It also sends the
cancel to the right.

In the scenario shown in Figure 7, there is a cancel race
on the right, so that the B2BUA receives inv200 from the
right and generates bye to the right. If there were no race,
it would receive invFail from the right and simply absorb it.
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B2BUA

invite

inv491

invite

inv491

invite

inv491

Caller UA Callee UA

Figure 4: A re-invite race in the presence of a B2BUA.

B2BUA

canc200

cancel

invite

invite

cancel

canc200

invFail

invFail

Caller UA Callee UA

Figure 5: Canceling in the presence of a B2BUA.

When the modified B2BUA generates invFail, it creates
a situation in which its two dialogs are in different and in-
compatible states. From that point on, there is no message
propagation, and the B2BUA handles the two dialogs sepa-
rately.

Although the modified B2BUA does not satisfy our in-
terim definition of transparency, it has other advantages,
such as responding faster overall to a cancel request. This
points to a potential benefit of finding a better definition of
transparency. If the definition were more observational, it
would allow more freedom in the implementation of B2BUAs.
This would give application and platform developers the
room to design better B2BUAs, with improved efficiency
and possibly other desirable properties.

3.2 Message Content
In order to achieve transparency, the message content, as

well as sequence, must be preserved. Message content in-
cludes the headers of a SIP message as well as the body.
A minimal number of headers are mandated by RFC 3261;
other headers are specified in a variety of RFCs. Finally, it
is always possible for a SIP UA to include so-called private
or extension headers. Message bodies convey information
in a wide variety of contexts, for example, descriptions of
media connectivity, conveyed via SDP; carriage of instant
messages (IMs); or carriage of commands and associated re-
sponses between a UA and a media server.

As discussed in Section 1, [11] begins to address the is-
sues of transparency with respect to message contents. The

recommendations in this section generally accord with that
document; however that document also discusses issues that
are outside the scope of this paper.

For correct propagation of the message, the body must be
copied from the incoming message to the outgoing message.
Furthermore, with the exceptions noted below, all headers
in the incoming message should be copied to the outgoing
message.

Part or all of three headers are used to provide a unique
dialog identifier: the value of the Call-ID header along with
the values of the tag parameter of the From and To headers.
Due to requirements for global uniqueness, these values can-
not be re-used in a new dialog; the B2BUA must generate
its own unique values.

The Via and Contact headers are used for hop-by-hop
message routing, and thus should not be copied. Similarly, if
the topmost Route header in an incoming request targets the
B2BUA, it should not be copied. The Record-Route header
applies to a dialog; since the B2BUA terminates two dialogs,
it is responsible for adhering to any routing requirements of
this header in the two dialogs, but the header should not be
copied between dialogs.

The B2BUA must inspect Allow, Supported, and Re-

quired headers and modify them accordingly to reflect the
capabilities of the B2BUA. The Max-Forwards header is used
to detect routing loops. If the value of the header in an in-
coming request is greater than 0, the B2BUA should decre-
ment the value of the header by 1 for the propagated request;
otherwise the B2BUA should reject the request.
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canc200
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invite
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invFail
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inv200

ack

bye
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Caller UA Callee UA

canc200

Figure 7: A cancel race in the presence of a modified B2BUA.

4. EVALUATION OF IMPLEMENTATIONS
After we completed the specification of the correct behav-

ior of a transparent B2BUA and wrote a Promela program
to formally model the behavior, we undertook the task of
testing existing B2BUA implementations to evaluate if they
comply with the specification.

4.1 Systems Under Test
Our evaluation is restricted to implementations that (1)

are built on the SIP Servlet API, because it is the domi-
nant standard for SIP application development; and (2) have
source code freely available for inspection and use, so that
users of these implementations may make use of these re-
sults to make any necessary correction to the source code if
desired.

The SIP Servlet API provides limited support for B2BUA
applications in the form of the B2buaHelper class with sev-
eral convenience methods. A B2BUA application can use
this class to manage linkage of its two dialogs. As well, upon
receiving a request on the first dialog, the application can
call one of the convenience methods to create an outgoing
request on the second dialog. The SIP Servlet container is
responsible for modifying and copying various headers cor-
rectly. The SIP Servlet container also handles certain re-
quests on behalf of the application, for example the cancel
request. Therefore, a B2BUA implemented using the SIP
Servlet API relies on both correct application programming
and correct container behavior.

The B2BUA implementations we evaluated are listed be-
low:

B2bTerminator (BT) This is a complete example appli-
cation to illustrate the use of B2buaHelper given in
[2]. This application behaves transparently except it
tears down the call after a certain time. We test this
application as a transparent B2BUA by setting a very
large timeout value.1

ECharts for SIP Servlets (E4SS) E4SS is an open source
framework that allows the use of the finite state ma-
chine paradigm to program SIP servlets at a higher

1This code change, together with changes necessary for BT
to run on OCCAS, is available at [5].

level of abstraction [16]. It also includes reusable fea-
tures, amongst them a transparent B2BUA application
called B2buaSafe. The version tested is SVN version
1578.

SailFin Converged Application Framework (CAFE)
This is another open source framework that provides a
higher level of programming abstraction for SIP appli-
cations [15]. By default, a CAFE application acts as
a transparent B2BUA. The programmer can override
the transparent behavior at different events to imple-
ment the specific logic of the application. The version
tested is sailfin-cafe-v1-b24.

The containers we evaluated are SailFin [14] version sailfin-
v2-b31g and Oracle Communication Converged Application
Server (OCCAS) version 4.0. BT and E4SS can be deployed
and tested on both containers. CAFE currently only sup-
ports the SailFin container and thus is not tested on OC-
CAS. Thus in total there are five systems under test (SUTs):
BT/SailFin, BT/OCCAS, E4SS/SailFin, E4SS/OCCAS, and
CAFE/SailFin.

4.2 Manual Test Generation
We first utilized KitCAT [17] to test the above B2BUA

implementations. KitCAT is a test tool for performing func-
tional testing of converged (SIP and HTTP) applications.
For this testing, KitCAT acts as both the caller and callee
user agents. Drawing on experience at the SIP Interoperabil-
ity Test events and call flow documents [9, 6], we wrote 12
test cases including race conditions where the two endpoints
send messages at the same time (e.g. cancel and inv200, bye
and bye). The test cases include assertions to check that the
SUT sends the correct messages and that the message head-
ers and contents are passed correctly according to Sections
3.1 and 3.2 respectively. The test results are discussed in
Section 4.4.1.

However, writing these KitCAT test programs manually
proved to be time-consuming. Moreover, KitCAT imposes a
call state machine on its test agents which precludes the gen-
eration of certain scenarios such as the re-invite race shown
in Figure 1. We concluded that we require a lower level
test tool for this kind of protocol testing, and also automat-
ically generated tests for better coverage. This approach is
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discussed in the following section.

4.3 Model-Based Test Generation
Given the complexity of the SIP protocol, and the possible

interactions that may occur between agents and a B2BUA,
one might infer that the universe of possible behaviors is very
large indeed. Verification confirms this: the Spin model-
checker discovers 48,966,575 unique states for our combined
agent-B2BUAmodel. In the context of testing, this immense
state space indicates that a hand-crafted test suite of 10, 20,
or even 100 tests cannot possibly provide adequate coverage.
The testing challenge then is to improve upon what can
achieved by hand-crafting a test suite.

The approach we’ve chosen is to generate tests using the
same model we use for verification. One advantage of this
approach is that generated tests are guaranteed to conform
to behaviors specified by the model. Another advantage is
that it is possible, in principle, to generate a test suite that
satisfies a notion of complete coverage. However, as we have
seen, the tremendous size of the state space makes this latter
goal impractical for any obvious notion of completeness. For
this reason we’ve identified a series of test criteria that allow
us to intuitively partition the universe of possible tests into
practically sized test suites. For each test we identify:

• the length: the total number of messages sent or re-
ceived by the user agents – the greater the number
of messages sent, the more complex the interaction is
between agents;

• the maximum queue size: the maximum number of
messages that are enqueued at any time on the agent
and B2BUA queues – more enqueued messages corre-
sponds to greater channel latency or scarcity of pro-
cessing resources

• the “weather profile” which is determined by the mes-
sages present in the test:

– a “sunny day” test excludes invFail, cancel, DVR,
and ackTimeout messages;

– a“cloudy day”test includes at least one invFail or
cancel message but no DVR or ackTimeout mes-
sages;

– a “stormy day” test includes at least one DVR or
ackTimeout message.

We can now identify tests that meet a particular criteria,
for example: “all” sunny day tests with queue size 1 and
length less than or equal to 12 (the meaning of the “all”
will be qualified shortly). This test suite would correspond
to moderately complex but normal behavioral interaction
between agents via a B2BUA.

We use a two phase approach to automatically generate
tests as shown in Figure 8. The first phase generates “test
traces” from the model. A test trace is a high-level symbolic
representation of a sequence of messages sent or received by
the user agents via the B2BUA. The second phase trans-
lates a set of test traces to an executable test suite. Each
executable test ensures that messages are sent and received
in a timely fashion and in the expected order.

An example of a test trace is:

Figure 8: Two phase model-based test generation.

Figure 9: A model’s states and paths.

8

(caller)[out!invite,none]:(callee)[in?invite,sdp]:

(callee)[out!inv200,offer]:(caller)[in?inv200,sdp]:

(caller)[out!bye,none]:(callee)[in?bye,sdp]:

(callee)[out!bye200,none]:(caller)[in?bye200,sdp]:

1:1:1:ALL:1

where the first number indicates the test length, the final
five colon-delimited fields indicate the individual and over-
all maximum queue lengths for the agents and the B2BUA
(here “ALL” indicates that both agents and the B2BUA had
the same maximum queue size of 1) and the remaining colon-
delimited fields represent messages sent or received by the
agents. Thus, a test trace contains all the information re-
quired for selecting a test that meets the criteria described
in the previous section.

Since the Spin model checker parses our model and tra-
verses its state space to perform verification we chose to
harness this machinery in order to generate tests. However,
trace-based test generation involves recording the paths in-
terconnecting a model’s states but, being a model checker,
Spin endeavors only to visit all of a model’s states. Consid-
ering the example model shown in Figure 9, Spin would visit
states S1 through S5 of the model shown. However, utiliz-
ing its depth-first search algorithm, Spin would completely
traverse path P1 or P2 but it wouldn’t completely traverse
both. This is because state S4 is common to both paths so
the second path would be truncated when the depth first
algorithm arrives at state S4 a second time. To bridge the
divide between state and path traversal we augmented our
model and Spin’s verifier. The agent model is augmented
to maintain a record of messages sent and received by the
agents. This way, each reachable state of the augmented
model will include a record of the path traversed to reach
the state. Spin’s depth-first verifier algorithm is augmented
to output a complete path (a path from the initial state to
a valid end state) when it encounters one.
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It was also necessary to refine the modified B2BUA model
presented in Section 3.1.4 in order to exclude tests that re-
flected unachievable container behavior. Containers nor-
mally serve requests in FIFO order but, using a B2BUA
model that dedicates a separate request queue to each agent,
tests were generated that required a container to serve one
agent’s requests while unfairly neglecting the other agent’s
requests. To eliminate this unfair behavior we replaced
the B2BUA’s two input queues with a single queue that
is shared by the two agents. This modification ensures that
the B2BUA serves requests in FIFO order the same way a
container does.

Spin supports limiting a search to a pre-defined depth,
where depth is defined in terms of the number of transitions
traversed between model states. We use this depth limiting
facility to limit the number of generated tests. For example,
for a depth limit of 71 we generate 361,737 unique tests
ranging from length 4 to 17, and overall maximum queue
size of 5. Generating a test set this way is memory and CPU
intensive. For example, generating the aforementioned tests
required 105 GB of preallocated RAM and 40 CPU minutes
of a single 2.40 GHz Intel Xeon processor core.

Given the enormous number of generated tests, one might
expect reasonable coverage of system behavior. To confirm
this intuition we inspected the tests for instances of example
call flows. We confirmed that there were many representa-
tive test cases corresponding to the hand-crafted test suite
described in Section 4.2. We also identified the four call flows
from the “Example Call Flows of Race Conditions” RFC [6]
that conform to the scope of our model and confirmed that
representative tests existed for each.

Although inspection of the generated tests cases reveals
excellent test coverage, inspection also reveals that the set
of generated tests is not complete for the specified depth
limit. For example, inspection of our tests reveals that not
all message interleavings are present for all call flows. We
assume that the underlying reason is that Spin’s verifica-
tion algorithm is not designed for traversing all paths of a
model, rather it is designed for traversing all states of the
model. Determining which particular aspect of the verifica-
tion algorithm is responsible for compromising completeness
is something we are currently investigating.

Figure 10 shows the test application architecture. The
test driver is responsible for administering the generated
tests and recording test results. We use the JUnit unit test
framework [10] for executing a test suite and reporting test
results. In addition to JUnit the tests also use the ECharts
for JAIN-SIP (E4JS) API for sending and receiving SIP mes-
sages. JAIN-SIP [8] provides a transaction-user API for SIP
and E4JS [4] is an abstraction layer on top of JAIN-SIP
that provides facilities for managing multiple agents, in our
case a caller and callee agent, sharing a SIP stack instance.
The system under test is a B2BUA SIP Servlet application
running in a SIP Servlet container.

4.4 Test Evaluation
The following presents the results of applying the manu-

ally and automatically generated tests to the systems under
test.

4.4.1 Results of Manually Generated Tests
Table 1 shows the results of using KitCAT and hand-

crafted test cases to test the five SUTs listed in Section 4.1.

Figure 10: The test application architecture.

The results reveal two problems related to message se-
quencing. First, when faced with the cancel race shown in
Figure 7, BT and CAFE do not send bye to terminate the
right dialog even though the left dialog has been terminated.

Second, in the scenario where callee receives re-invite,
sends inv200, but before receiving ack the callee sends bye,
all three SUTs on SailFin fail. This reveals a bug in the
SailFin implementation where it throws an exception if the
application attempts to send a mid-dialog request before re-
ceiving the ack request, even though this is allowed by [13].

In terms of message content transparency, BT and CAFE
rely on B2buaHelper class to create outgoing requests based
on incoming requests. OCCAS copies unknown extension
headers in this operation, but SailFin does not. However,
in forwarding responses the application must copy unknown
headers. E4SS uses its own code to copy headers from in-
coming to outgoing messages. However, this testing reveals
a bug in the E4SS implementation where headers in the ack
request are not copied.

4.4.2 Results of Automatically Generated Tests
We used only the OCCAS container for evaluating B2BUAs

with automatically generated tests. This is because of the
SailFin bug uncovered using manual testing described in
the previous section. Since we did not use SailFin then
we could not test CAFE. Thus in total there are two SUTs
for testing with automatically generated tests: BT/OCCAS,
E4SS/OCCAS. Table 2 shows the results of our testing.

Of the over 360,000 tests generated, we used the criteria
described in Section 4.3 to select a manageable test suite
of 2,408 tests: 257 sunny day, 1,335 cloudy day and 816
stormy day. We confirmed that these tests included the
scenarios covered by our manually generated tests. Fur-
thermore, we made sure that the cloudy day tests included
cancel/invite200 races, re-invite races, and common failure
scenarios. In general, we selected tests with a maximum
queue size of 1 except for cases that required queue sizes of
2, such as in some cancel scenarios where two response mes-
sages can be sent in a row by an agent. Using a small queue
size represents normal environmental conditions, with mini-
mal channel latency and minimal competition for processing
resources. Test length for cancel scenarios and stormy day
scenarios were limited to length 11 and 13, respectively.

The test results, shown in Table 2, reveal failures in both
the B2BUA applications and in the underlying OCCAS con-
tainer (container failures are indicated by a ∗ superscript).

For the cloudy day tests, neither SUT was capable of ne-
gotiating the complexities of certain re-invite races. Testing
also uncovered the same problem with BT that we uncov-
ered using manual testing, namely the inability to properly
handle a cancel/inv200 race. The E4SS B2BUA does not
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SUT
Message Sequence

Message Content
Tests passed Failed cases

BT/OCCAS 11/12 cancel and inv200 race Partially fail: responses

BT/SailFin 10/12
cancel and inv200 race

Fail: requests, responses
Callee sends bye before receiving ack

E4SS/OCCAS 12/12 Partially fail: ack
E4SS/SailFin 11/12 Callee sends bye before receiving ack Partially fail: ack

CAFE/SailFin 10/12
cancel and inv200 race

Fail - requests, responses
Callee sends bye before receiving ack

Table 1: Results of Manually Generated Tests

Category
SUT

BT/OCCAS E4SS/OCCAS
Tests passed Failed cases Tests passed Failed cases

Sunny Day 257/257 257/257
Cloudy Day 830/1,335 56 re-invite race 888/1,335 56 re-invite race

98 cancel/inv200 race 40 outstanding requests after invFail
217 request after bye 217 request after bye
134 504s after dialog terminated∗ 134 504s after dialog terminated∗

Stormy Day 568/816 32 canc200 instead of cancDVR∗ 760/816 32 canc200 instead of cancDVR∗

196 cancel/inv200 race 5 outstanding requests after invFail
15 bye after DVR∗ 15 bye after DVR∗

5 create final response after DVR 4 bye after ackTimeout

Table 2: Results of Automatic Testing

propagate responses to outstanding requests after receving
an invFail. Both B2BUAs continue to propagate requests
after receiving a bye. Finally, the tests revealed an OCCAS
container bug, where the container sends 504 responses to
outstanding requests after a dialog has terminated.

For the stormy day tests we discovered that OCCAS pre-
vents sending a bye after receiving a DVR response, even
though sending a bye is specified by RFC 3261. As for the
cloudy day tests, E4SS failed to propagate responses to out-
standing requests after receiving an invFail and BT failed
to handle cancel/inv200 races. Another OCCAS container
problem is that it would sometimes send a canc200 instead
of the expected cancDVR in some DVR scenarios. BT fails
to propagate a message because one of BT’s SipSessions no
longer exists. It isn’t clear if this is due to a bug in BT, the
SIP Servlet specification or the OCCAS container. Finally,
E4SS failed to propagate bye messages after an ackTimeout
event.

4.4.3 Discussion of Results
Our testing, using both manually and automatically gen-

erated tests, reveals problems with every application and
container we looked at. From this we conclude that imple-
menting a correct B2BUA is difficult and, moreover, that
comprehensive testing is necessary to validate B2BUA be-
havior. Our results support efforts like SailFin CAFE and
E4SS whose goals include providing a reusable, correctly im-
plemented B2BUA that hides the inherent complexity from
the programmer. Furthermore, our results indicate that
comprehensive application-level testing supports validating
container behavior and reveals ambiguities in the SIP Servlet
specification. Finally, our results support our approach to
model-based test generation. Not only do our automatically

generated tests uncover the same B2BUA failures that our
hand-crafted tests do, but they also uncover new failures
resulting from unusual stormy day call flows.

5. DISCUSSION AND FUTURE WORK
SIP is becoming increasingly important as the dominant

protocol for IP-based telecommunications and multimedia
systems. The specification of SIP is informal and in some
places incomplete, inconsistent, or ambiguous. SIP is com-
plex already and its complexity is increasing, as the protocol
is extended for a variety of reasons.

This study and our previous work [18] show that this sit-
uation is both dangerous and unnecessary. With judicious
use of formal specification and automated analysis, the SIP
protocol can be documented in a way that is guaranteed
complete, consistent, unambiguous, and correct with respect
to a variety of assertions. Critical SIP components such as
B2BUAs can be defined with an equivalent level of quality.
These models can be exploited to generate large, comprehen-
sive test suites for real implementations. Given the number
of bugs and other problems that our work has uncovered, it
is safe to say that important goals such as interoperability
and reliability cannot be achieved without formal methods.

Important future work is to continue to extend the scope
of the model such that commonly used extensions to the SIP
protocol are included.

The B2BUA models presented here prescribe determinis-
tic behavior. However, in some cases, we made a choice from
multiple legal alternatives. For example, in the cancel race
of Figure 7, the B2BUA sends ack before bye, even though
it is legal to send the bye without sending a previous ack.
Further study is required in order to determine the criteria
used to resolve such ambiguous situations.
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It is our intention to expand the scope of our testing to in-
clude tests with greater lengths and maximum queue sizes.
The machine we use for generating traces has 128 GB of
RAM which limits us to a Spin verification depth limit of
71. Using the current model this results in a maximum test
length of 17. By simplifying the model, for example, by con-
straining certain transition sequences to execute atomically,
we should be able to greatly reduce the state space with-
out compromising completeness, thereby permitting deeper
searches and generation of longer test traces.

Another challenge we faced was analyzing test results.
While our test platform unambigiously indicates how many
tests pass and how many fail, it does not provide any insight
into why tests fail. To do this we resorted to manually in-
specting failure signatures extracted from log files, their as-
sociated test cases and the associated application code. Nat-
urally, this becomes tedious and error-prone as the number
of failure cases increases. This process would benefit from
automated post-processing where similar failure signatures
could be grouped thereby reducing the number of failures
requiring investigation.

A goal of the SIP Servlet specification is to simplify life
for the application developer. To this end, a SIP Servlet
container presents an abstraction of the SIP stack to the
programmer. This abstraction intersects with that of a SIP
transaction-user but, in some cases, also presents a higher-
level abstraction. The problem, as revealed by our testing,
is that this abstraction is incompletely specified and has led
container vendors to make their own, independent imple-
mentation decisions without fully understanding their impli-
cations. The result is that the SIP Servlet standard, whose
goal is to support interoperability of applications across con-
tainers, does not achieve that goal. To address this situation,
a topic for future research is to formally specify SIP Servlet
container behavior and integrate the resulting model with
our B2BUA models.
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ABSTRACT
Securing VoIP is a crucial requirement for its successful
adoption. A key component of this is securing the signaling
path, which is performed by SIP. Securing SIP is accom-
plished by using TLS instead of UDP as the transport pro-
tocol. However, using TLS for SIP is not yet widespread,
perhaps due to concerns about the performance overhead.

This paper studies the performance impact of using TLS
as a transport protocol for SIP servers. We evaluate the
cost of TLS experimentally using a testbed with OpenSIPS,
OpenSSL, and Linux running on an Intel-based server. We
analyze TLS costs using application, library, and kernel pro-
filing, and use the profiles to illustrate when and how differ-
ent costs are incurred, such as bulk data encryption, public
key encryption, private key decryption, and MAC-based ver-
ification.

We show that using TLS can reduce performance by up to
a factor of 17 compared to the typical case of SIP-over-UDP.
The primary factor in determining performance is whether
and how TLS connection establishment is performed, due to
the heavy costs of RSA operations used for session negotia-
tion. This depends both on how the SIP proxy is deployed
(e.g., as an inbound or outbound proxy) and what TLS op-
tions are used (e.g., mutual authentication, session reuse).
The cost of symmetric key operations such as AES, in con-
trast, tends to be small.

1. INTRODUCTION
Securing Voice over IP (VoIP) is a necessary requirement

for enabling its stable, long-term adoption. A key aspect of
VoIP security is securing the signalling path, typically pro-
vided by the Session Initiation Protocol (SIP) [35]. SIP is
an application layer signaling protocol for creating, modify-
ing, and terminating media sessions in the Internet. Major
standards bodies including 3GPP, ITU-T, and ETSI have all
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not made or distributed for profit or commercial advantage and that copies
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adopted SIP as the core signaling protocol for services such
as VoIP, conferencing, Video on Demand (VoD), presence,
and Instant Messaging (IM). Like other Internet services,
SIP-based services may be susceptible to a wide variety of
security threats including social threats, traffic attacks, de-
nial of services and service abuse [3, 7, 22]. One of the main
reasons that enable these threats is the common use of inse-
cure SIP signaling such as SIP-over-UDP, which provides no
signaling confidentiality, integrity, or authenticity. Given a
trace of SIP traffic, one can see who is communicating with
whom, when, for how long, and sometimes even what is be-
ing said (e.g., in SIMPLE [8]). It has also been shown that
even commercial VoIP services may be prone to large-scale
voice pharming [41], where victims are directed to fake in-
teractive voice response systems or human representatives
for revealing sensitive information.

Transport Layer Security (TLS) [15] is a widely used In-
ternet security protocol occupying a layer between the ap-
plication and a reliable transport like TCP. There is also a
Datagram TLS (DTLS) [33] protocol that provides similar
security functionalities but runs over an unreliable transport
like UDP. The SIP specification [35] lists TLS as a standard
method to secure SIP signaling. Various other organizations
and industrial consortiums have also recommended or man-
dated the use of TLS for SIP signaling. For example, the SIP
Forum [2] mandated TLS for interconnecting enterprise and
service provider SIP networks in its specification document.

However, while interest in securing SIP is growing [31],
actual large scale deployment of SIP-over-TLS has not yet
occurred. One important reason is the common perception
that running an application over TLS is costly compared to
running it directly over TCP (or UDP in the case of SIP).
VoIP providers will be hesitant to deploy TLS until they
understand the resource provisioning and capacity planning
required. Thus we need to understand how much using TLS
with SIP actually costs.

This paper makes the following contributions:

• We present an experimental performance study of the
impact of using TLS on SIP servers. Our study is
conducted using OpenSIPS [27] with OpenSSL [28]
on Linux on an Intel-based server. We evaluate the
CPU cost of TLS under four SIP proxy usage scenar-
ios: proxy chain, outbound proxy, inbound proxy, and
local proxy. We show that using TLS can reduce per-
formance by up to a factor of 17 compared to the typ-
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ical case of SIP-over-UDP.

• We use application, library, and kernel profiles to ex-
amine, analyze, and explain performance differences.
The profiles illustrate how costs are incurred under dif-
ferent scenarios (e.g., extra Rivest, Shamir and Adle-
man (RSA) overheads when mutual authentication is
used) and how the costs can be reduced (e.g., RSA
costs disappear when session reuse is performed). They
also show some results that distinguish SIP server from
other server scenarios (e.g., bulk crypto costs of Ad-
vanced Encryption Standard (AES) or Triple Data En-
cryption Standard (3DES) are small) and how some
overheads are due to mechanisms (e.g., kernel over-
head, Secure Sockets Layer (SSL) state management)
rather than simply crypto algorithms such as RSA or
AES.

• We identify and solve two performance problems in
OpenSIPS. Each is related to connection management
with large numbers of connections under high loads.
The fixes improve performance in some cases from a
few tims up to an order of magnitude.

Previous studies on TLS performance have either focused
on TLS for Web servers [5, 10, 21, 44] or policy-based net-
work management [43]. SIP protocol behavior is different
from these protocols in several ways. SIP messages tend to
be small, whereas Web downloads can be quite large. SIP
proxy servers can act as clients to other servers and therefore
can incur large client-side TLS costs. Finally, SIP servers
have a much wider range of connection management behav-
ior than other servers, and this connection management is
the primary issue in determining TLS overheads, due to the
heavy costs of RSA operations used for session negotiation.
Symmetric key operations such as AES or 3DES are trivial
in comparison.

The net result is that the performance cost of deploying
SIP over TLS instead of UDP can be significant, depending
on how the SIP proxy server is deployed (e.g., as an inbound
or outbound proxy) and how TLS is configured (e.g., with
or without mutual authentication or session reuse). Network
operators can minimize this cost by attempting to maximize
the persistence of secure sessions, but still need to be aware
of the overhead of utilizing TLS.

The remainder of this paper is structured as follows. Sec-
tion 2 provides some background on TLS and SIP. Section 3
describes the testbed used and how we determine our test
cases. Section 4 presents our experimental results. Section 5
describes related work.

2. BACKGROUND

2.1 TLS Operation Overview
We provide a brief description of the TLS protocol. For

more details, please see [15, 32, 37]. We focus on the aspects
relevant to our study, namely session establishment and its
corresponding RSA public key costs.

TLS operation consists of two phases: the handshake phase
and the bulk data encryption phase. The handshake phase
allows the parties to negotiate the algorithms to be used
during this TLS session, authenticate the other party and
prepare the shared secret for the bulk data encryption phase.

The normal message flow in the TLS handshake phase
is illustrated in Figure 1(a). The key performance as-
pects of this handshake are that the server sends its cer-
tificate to the client, which then verifies the certificate us-
ing a certificate authority’s public key. Depending on
the key exchange mode, the client may then generate a
pre_master_secret, and encrypt it using the server’s pub-
lic key obtained from the server’s certificate. The server
decrypts the pre_master_secret using its own private key.
Both the server and client then compute a master_secret

they share based on the same pre_master_secret. The mas-
ter_secret is further used to generate the shared symmetric
keys for bulk data encryption and message authentication.

In normal TLS handshake, only the client authenticates
the server. In situations where the server also wishes to au-
thenticate the client, TLS provides a mutual authentication
mode as shown in Figure 1(b). In the mutual authentication
mode, after the server sends its own certificate to the client,
the server sends an additional CertificateRequest message
to request the client’s certificate. The client responds with
two additional messages, a Certificate message containing
the client certificate with the client public key, and a Cer-

tificateVerify message containing a digest signature of
the handshake messages signed by the client’s private key.
Since only a client holding the correct private key can sign
the message, the server can authenticate the client using the
client’s public key.

In general, public key cryptographic operations such as
RSA are much more expensive than shared key cryptog-
raphy. This is why TLS uses public key cryptography to
establish the shared secret key in the handshake phase, and
then uses symmetric key cryptography with the negotiated
shared secret as the data encryption key. TLS offers a ses-
sion reuse mode where the two parties can avoid negotiat-
ing the pre_master_secret if it has been done previously
within some time threshold. It is important to distinguish
the notion of a connection versus a session in TLS. A TLS
connection corresponds to one specific communication chan-
nel which is typically a TCP connection; while a TLS session
is associated with a negotiated set of algorithms and the es-
tablished master_secret based on the pre_master_secret.
Multiple connections may be mapped to the same session, all
sharing the same set of algorithms and the master_secret,
but each with different symmetric keys for bulk data en-
cryption. The notion of session reuse indicates the reuse of
a previously negotiated set of cryptographic algorithms and
the master_secret. The handshake message flow for TLS
session reuse is shown in Figure 1(c). The first time the
client and server communicate, they establish a new con-
nection and a new session. The server stores the session
information including the algorithm choice and the mas-

ter_secret for later reference. The session is identified by a
session_id which is conveyed to the client during the initial
handshake in the ServerHello message. The next time the
client needs to establish a connection, it can include the pre-
vious session_id in the ClientHello message. The server
agrees to session reuse by specifying the same session_id

in the responding ServerHello message. The TLS hand-
shake will then proceed to ChangeCipherSpec message and
Finished message directly, avoiding the re-computation of
a pre_master_secret. The session reuse timeout is con-
figurable based on the security assumptions of how long it
takes to break the key by brute-force.
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Figure 1: TLS Handshake Message Flows

2.2 SIP Overview
SIP defines two basic types of entities: User Agents (UAs)

and servers. UAs represent SIP end points. SIP servers con-
sist of registrar servers for location management, and proxy
servers for message forwarding. SIP messages are divided
into requests (e.g., INVITE and BYE to create and terminate
a SIP session, respectively) and responses (e.g., 200 OK for
confirming a session setup). The set of messages including
a request and its associated responses is called a SIP trans-
action.

SIP message forwarding, known as proxying, is a critical
function of the SIP infrastructure. This forwarding process
is provided by proxy servers and can be either stateless or
stateful. Stateless proxy servers do not maintain state infor-
mation about the SIP session and therefore tend to be more
scalable. However, many standard application functionali-
ties, such as authentication, authorization, accounting, and
call forking require the proxy server to operate in a stateful
mode by keeping different levels of session state information.
Therefore, we focus on stateful SIP proxying in this paper.

Figure 2 shows a typical message flow of stateful SIP prox-
ying with authentication enabled. Two SIP UAs, designated
as User Agent Client (UAC) and User Agent Server (UAS)
represent the caller and callee of a multimedia session. The
hashed circle around the proxy indicates that this is the
server that we are measuring (“system under test”). In this
example, the UAC wishes to establish a session with the
UAS and sends an INVITE message to the proxy. The proxy
server enforces proxy authentication and responds with a
407 Proxy Authentication Required message, challenging
the UAC to provide credentials that verify its claimed iden-
tity (e.g., based on MD5 [34] digest algorithm). The UAC
then retransmits the INVITE message with the generated cre-
dentials in the Authorization header. After receiving and
verifying the UAC credential, the proxy sends a 100 TRY-

Figure 2: SIP Stateful Proxying with Authentica-
tion
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ING message to inform the UAC that the message has been
received and that it needs not worry about hop-by-hop re-
transmissions. The proxy then looks up the contact address
for the SIP URI of the UAS and, assuming it is available,
forwards the message. The UAS, in turn, acknowledges re-
ceipt of the INVITE message with a 180 RINGING message
and rings the callee’s phone. When the callee actually picks
up the phone, the UAS sends out a 200 OK. Both the 180

RINGING and 200 OK messages make their way back to the
UAC through the proxy. The UAC then generates an ACK

message for the 200 OK message. Having established the ses-
sion, the two endpoints communicate directly, peer-to-peer,
using a media protocol such as RTP [39]. However, this me-
dia session does not traverse the proxy, by design. When
the conversation is finished, the UAC “hangs up” and gen-
erates a BYE message that the proxy forwards to the UAS.
The UAS then responds with a 200 OK which is forwarded
back to the UAC.

SIP proxy authentication is an optional operation, typi-
cally done between a UA and its first hop SIP proxy server.
While the example above shows a single SIP proxy along the
path, in practice it is common to have multiple proxy servers
in the signaling path. The message flow with multiple proxy
servers is similar, except that the proxy authentication is
usually only applicable to the first hop.

2.3 SIP Connection Management over TLS
SIP can operate over different transport protocols, both

reliable and unreliable. Since TLS requires a reliable trans-
port, all our evaluations for TLS use TCP transport. In
general, a TCP connection is first established between end-
points, and then a TLS handshake occurs to negotiate the
TLS session. Once the TLS session is established, the SIP
signaling messages will be passed to the TLS layer and en-
crypted.

When a connection oriented transport such as TCP is
used, the connection management policy needs to be de-
fined. In a multi-hop SIP server network scenario, it is usu-
ally preferable to maintain a single long-lasting connection
between two interconnected proxy servers. All SIP messages
between the two proxy servers that go through the same ex-
isting connection can avoid the per-session connection hand-
shake overhead. In contrast, if the proxy server is connected
with a SIP UAC or UAS directly, the proxy typically has to
establish separate connections with each of them since they
are located on separate hosts.

3. TESTBED AND METHODOLOGY

3.1 OpenSIPS SIP Server
The SIP server we evaluated is Open SIP Server (Open-

SIPS) version 1.4.2 [27], a freely-available, open source SIP
proxy server. OpenSIPS is a fork of OpenSER, which in turn
was a fork of SIP Express Router (SER) [20]. All these proxy
servers are written in the C language, use standard process-
based concurrency with shared memory segments for sharing
state, and are considered to be highly efficient. These sets of
server implementations represent the de facto open source
version of SIP server, occupying a role similar to that of
Apache for web server [4, 6, 13, 14, 16, 17, 24, 30, 42].

We made several modifications to OpenSIPS in order to
support all of our test cases. In particular, we added a con-
nection mode where OpenSIPS will establish a new connec-

tion to a UAS upon a new call, even if the UAS has the same
IP address. This is needed to test the multiple connection
mode between the proxy server and UAS using a limited
number of UAS machines. We also added OpenSIPS op-
tions to to request TLS session reuse when it is acting as
the TLS client, and OpenSIPS options to request for TLS
mutual authentication when it is acting as the TLS server.

One unexpected parameter that initially prevented us from
running high load tests with SIP proxy authentication is the
“nonce index” value in OpenSIPS. It turns out that the de-
fault MAX_NONCE_INDEX value used to create nonce for proxy
authentication is too small and could exhaust easily at high
load. When the nonce could no longer be generated, au-
thentication cannot proceed and the server will simply re-
ject calls. We increased the default MAX_NONCE_INDEX value
from 100, 000 to 10, 000, 000. This change alone increased
the throughput results dramatically, e.g., in the proxy chain
mode the peak throughput with SIP proxy authentication is
increased by close to an order of magnitude.

In configurations involving proxy authentication where a
user database is required, we use MySQL-5.0.67 [26], which
we populated with 10, 000 unique user names and passwords.
The MySQL server runs on the same machine as the Open-
SIPS server.

3.2 SIPp Client Load Generator
We use another freely available open-source tool, SIPp [19]

to generate SIP traffic. SIPp allows a wide range of SIP
scenarios to be tested, such as UAC, UAS and Third-Party
Call Control (3PCC). We use the SIPp release from August
26th, 2008. We also added additional functionality to SIPp
to accommodate all our test cases. Specifically, we added
SIPp options to request TLS session reuse when it is acting
as the TLS client and SIPp options to request TLS mutual
authentication when it is acting as the TLS server. The
TLS support library for SIPp is a statically-compiled version
based on OpenSSL [28] release 0.9.8i (which is the latest
release at the time of the compilation).

3.3 Hardware and Connectivity
The server hardware we use has 2 Intel Xeon 3.06 GHz pro-

cessors with 4 GB RAM and 34 GB disk drives. However, for
our experiments, we only use one processor because SIP per-
formance under multiple processors or a multi-core proces-
sor is itself a topic that requires separate attention [42]. We
use 10 client machines, six of which have 2 Intel Pentium 4
3.00 GHz processors with 1GB RAM and 80GB hard drives.
The other four have 2 Intel Xeon 3.06 GHz processors with
4GB RAM and 36GB hard drives. The server and client
machines communicate over copper Gigabit or 100Mbit Eth-
ernet. The round trip time measured by the ping command
from the client to the server is around 0.15 ms.

3.4 Software Platform
The server uses Ubuntu 8.04 with Linux kernel 2.6.24-19,

OpenSSL 0.9.8.g, and oprofile 0.9.3. The clients use Ubuntu
with either a 2.6.22 kernel or a 2.6.24 kernel. We encoun-
tered an SSL library failure at the SIPp load generator side
when generating high loads. After examining the OpenSSL
error queue in more detail, the ERR_error_string is found
to be error:1409F07F:SSL routines:SSL3_WRITE_PENDING:

bad write retry. A bug fix is found at [18]. This fix was
submitted in 2003 but had not yet been incorporated into
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the OpenSSL release. We therefore recompile SIPp using
OpenSSL version 0.9.8i source with this fix included. The
OpenSIPS server machine uses the existing OpenSSL version
0.9.8g. The bug does not manifest itself there and keeping
the original OpenSSL on the server makes profiling more
convenient.

3.5 Workload and Performance Metrics
The workload is a standard SIP call flow provided by SIPp

illustrated in Figure 2. There is no call hold time. Our
main metrics are server throughput as reported by SIPp and
server profile CPU events as reported by oprofile [29]. We
also measure server CPU utilization. All our test runs last
for 120 seconds after a 30-second warm-up time. All metrics
are the average of three consecutive test runs.

3.6 Test Matrix and Evaluated Test Cases
We first group possible SIP server connection manage-

ment configurations into four different deployment modes
as shown in Figure 3.6.

1. Figure 3(a) shows the proxy chain mode, where the
proxy server interconnects two other proxy servers in
a chain fashion. This is intended to model, e.g., how
two core SIP proxy servers of different service providers
communicate. Only one connection is needed for each
neighboring proxy server in this case.

2. Figure 3(b) shows the outbound proxy mode, where
the proxy accepts multiple connections from UACs but
only establishes a single outgoing connection with an-
other proxy server. This configuration models how
phones in an enterprise VoIP deployment would make
calls external to the organization.

3. Figure 3(c) is the inbound proxy mode, where the proxy
server under test accepts a single connection from an
upstream proxy server and establishes multiple connec-
tions to individual UASes. This is the mirror of the
outbound proxy configuration above, where incoming
SIP traffic is routed to phones.

4. Figure 3(d), is the local proxy mode, where the proxy
server under test connects UACs and UASes directly,
and therefore accepts both incoming connections and
creates outgoing connections simultaneously. This con-
figuration is intended to model how phones in an enter-
prise deployment would communicate with each other.

SIP proxy servers usually support all these four modes
of operation, thus this characterization is somewhat logical
rather than physical. While in practice real proxy behavior
will lie somewhere in the middle of these four extremes, the
characterization lets us explore the design space fully.

For example, a SIP proxy operating in the proxy chain
mode could well connect a number of different proxy pairs.
It does not necessarily interconnect only a single pair of
proxy servers. Similarly, an outbound proxy might connect
to more than one upstream proxy. The four modes thus
describe the full range of connection management behavior
for SIP proxy servers, from completely persistent connec-
tions to a small set of nodes (the proxy chain mode) to non-
persistent connections where each call requires a connection
setup and teardown (the local proxy mode). In addition, the
inbound and outbound cases distinguish where connections

are passively accepted (the inbound proxy mode) vs. those
that are created (the outbound proxy mode). To explore the
applicable test matrix, we characterize five main configura-
tion variables in our SIP-over-TLS tests: TLS connection
management, TLS session reuse, TLS mutual authentica-
tion, TLS cipher suite and SIP proxy authentication. Note
that the connection mangagement configuration options also
applies to TCP.

(a) proxy chain

(b) outbound proxy

(c) inbound proxy

(d) local proxy

Figure 3: SIP Proxy Operation Modes

To relate connection management with other configura-
tion parameters, we draw a unified logical component graph
of the testbed as in Figure 4. The proxy server in the mid-
dle represents the server under test. The whole testbed is
split into the left path and the right path, which consists of
the left pair and the right pair of the logical UAC and UAS
components, respectively. The applicable configuration op-
tions in each of the four connection management modes can
then all be mapped into Table 1, where N/A indicates “Not
Applicable”.

Directly expanding the whole test space in Table 1 re-
sults in numerous configuration scenarios which are both in-
tractable and unnecessary. We make the following decisions
to narrow down the cases towards a workable test set. First,
for TLS cipher suite, since the SIP standard [35] already
specifies the mandatory TLS_RSA_WITH_AES_128_CBC_SHA ci-
pher suite (abbreviated as TLS-AES) and a recommended
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite (abbreviated
as TLS-3DES), we focus on these two cipher suites only. In
particular, since the impact differences between these two ci-
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TCP/TLS TLS TLS TLS SIP
Multiple Session Mutual Cipher Proxy

Configuration Connections Reuse Authentication Suite Auth.
Left Path Right Path Left Path Right Path Left Path Right Path

Proxy Chain N/A N/A N/A N/A N/A N/A any Yes/No
Outbound Proxy Yes N/A Yes/No N/A Yes/No N/A any Yes/No
Inbound Proxy N/A Yes N/A Yes/No N/A Yes/No any Yes/No
Local Proxy Yes Yes Yes/No Yes/No Yes/No Yes/No any Yes/No

Table 1: Overall Test Matrix

UACL UASRUASL UACR

Left 
Path

Right 
Path

Figure 4: Logical Component Graph of SIP Testbed

pher suites are mainly on the bulk data encryption phase, we
test both cipher suites only in the proxy chain mode which is
specifically meant to examine the impact of TLS bulk data
encryption. For all other three proxy modes, we test TLS-
AES only. Second, we enable SIP proxy authentication only
in the outbound proxy and local proxy modes, which is a
common setting. Third, we test the TLS session reuse and
TLS mutual authentication separately to understand each
of their impacts. We configure appropriate certificates on
both servers and clients in experiments which require them.
Fourth, when both the left path and the right path can ap-
ply TLS session reuse or TLS mutual authentication, both
paths have the same setting. These decisions reduce our test
space for TCP and TLS to 16 configurations. Adding the
two UDP Auth and UDP NoAuth settings, we have a total
of 18 test configurations.

4. RESULTS AND ANALYSIS
Different proxy modes and configuration scenarios can in-

cur significantly different overheads and result in very differ-
ent limits on throughput. We start with the relatively sim-
ple proxy chain mode and then examine the more complex
modes of outbound proxy, inbound proxy, and local proxy.
For each of the 18 scenarios, we measure peak throughput
and then use CPU profiles to understand and explain the
performance costs.

4.1 Proxy Chain
Figure 5 shows the peak throughput in calls per second

(cps) for the proxy chain mode using several configurations.
Each bar shows the performance for a different configura-
tion. The first four bars have SIP proxy authentication
disabled and the next four have SIP proxy authentication
enabled. The tests include UDP, TCP only, TLS with the
TLS-AES cipher suite, and TLS with the TLS-3DES cipher
suite. Recall that in this mode, no connection setup over-
heads are incurred. The average CPU utilization ranges
from 95% to 100% in all the peak test cases except for the

Figure 5: Peak Throughput: Proxy Chain

UDP and TCP without authentication cases, which is about
70% and 85%, respectively. Note that not all the tests could
reach full CPU utilization because there is not always quite
enough client machines to fully load the testbed.

We see from Figure 5 that the peak throughput using TCP
achieves about 47% of the throughput using UDP, when SIP
proxy authentication is not used. When authentication is
enabled, TCP provides 78% of the corresponding UDP per-
formance. Adding TLS to the scenario results in even more
substantial performance reductions. When SIP proxy au-
thentication is not enabled, TLS-AES achieves 60% of the
corresponding TCP throughput, and TLS-3DES achieves
47% of the TCP throughput. When proxy authentication
is enabled, TLS-AES achieves 76% of the corresponding
TCP throughput and TLS-3DES achieves 68% of the TCP
throughput.

While it would be convenient to simply attribute the ex-
tra overheads to the corresponding encryption algorithms,
it turns out the reality is more complex. To better under-
stand the overheads, we turn to the CPU profiles generated
by oprofile. Our approach is to obtain a CPU profile of each
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configuration run at the same load level of 50 calls per sec-
ond so that results across configurations can be compared
meaningfully. As components are added (e.g., TLS vs. no
TLS) or changed (AES vs. 3DES), the attendant CPU costs
will manifest themselves in the profiles. This assumes costs
scale relatively linearly with load and exhibit the same pro-
portions at the peak as they do at 50 cps, which is not
always the case. To test the accuracy of this assumption,
we compare the observed peak throughputs with the ones
extrapolated based on the CPU cycle costs observed. On
average, the estimates match the observed peaks within 15
percent.

Figure 6: CPU Profile Cycle Costs: Proxy Chain
(50 cps)

Figure 6 shows the number of non-idle CPU cycles con-
sumed by the server in the proxy chain mode for each con-
figuration during the test. We see that the total cost of
the baseline UDP case without SIP authentication is about
144K CPU cycles. The most significant cost components
are kernel (68K) which accounts for 47%, and the sum of
OpenSIPS-Core and OpenSIPS-Model (54K), which con-
tributes another 38% of the total cost. When TCP is used
instead of UDP, the total costs increase 152K cycles or over
100%. Again most of the increase belongs to Kernel (60K)
and the sum of OpenSIPS-Core and OpenSIPS-Module (71K).

We see that adding TLS-AES introduces another 50% of
additional overhead, roughly 450K cycles vs. 300K cycles for
the TCP case. TLS-3DES is similar, with roughly 525K cy-
cles, and as would be expected, the differences in total cost
between TLS-AES and TLS-3DES are almost solely con-
tributed by the cost difference in cryptographic operations.

Half of the 150K increase from TCP to TLS-AES is di-
rectly contributed by TLS operations, and most of the re-
mainder is relatively evenly shared by increases in Kernel
and OpenSIPS-Core. Since 128 bits AES is less expensive
than SHA-1, AES itself only adds about 19K cycles in cost;
Message Authentication Code (MAC) overheads are higher
at 25K cycles. MAC overheads are incurred by the bulk
encryption algorithm, since each message is verified for au-
thenticity using the MAC algorithms. MAC overheads are
roughly equivalent regardless of the choice of AES or 3DES
since we use SHA-1 in both cases. While 3DES is over 4X as
expensive as AES (93K vs. 19K cycles), the relative differ-
ence between the two complete software stacks is only about

17% (525K vs. 450K). We expect AES to be faster since it is
a more recent cipher than 3DES and was designed for perfor-
mance. Other TLS overheads come from other components
in the OpenSSL library. For example, in the TLS-AES case,
there are other libcrypto functions (10K) and libssl (11K).
Thus a non-trivial component of SSL overheads is from using
the SSL mechanisms, such as allocating, freeing, maintain-
ing, and looking up SSL session state.

Comparing the TCP case and the two TLS cases, the CPU
profiles do not show the increases in kernel and OpenSIPS-
Core centering on any specific functions. Between the two
TLS cases themselves, the cost of Kernel and OpenSIPS-
Core are quite similar.

The major difference when SIP proxy authentication is
enabled is the additional database cost, which ranges from
16 − 29% of the total cost in each case. When the database
overhead is included, TCP will introduce 32% overhead over
UDP. TLS-AES and TLS-3DES will incur an additional 30%
and 44% over TCP, respectively. The rest of the cost con-
tributions are similar to when SIP authentication is not en-
abled, because the authentication database functions are or-
thogonal to the TLS functions.

4.2 Outbound Proxy

Figure 7: Peak Throughput: Outbound Proxy

Figure 7 shows the peak throughputs of the outbound
proxy mode for several configurations. Recall that in the
TCP or TLS cases of this mode, each call results in a new
connection being established with the server, as opposed to
the proxy chain mode above. Each bar again indicates a
different configuration, namely UDP, TCP, TLS, TLS with
mutual authentication, and TLS where session reuse occurs
on each TLS connection. Each configuration has SIP au-
thentication enabled. Since the choice of AES or 3DES only
affects the bulk data encryption overheads, which we exam-
ined in Section 4.1, for simplicity we restrict our experiments
with TLS to use only AES for the remainder of this paper.
The average CPU utilization in each case is around 90%. We
see that the peak throughput in the TCP case is around 58%
of the baseline UDP case. The TLS case is approximately
56% of the TCP case. Within the TLS cases, adding TLS
mutual authentication reduces throughput about 20%, while
enabling session reuse increases throughput about 20%.

Figure 8 shows the CPU profiles for the different out-
bound proxy configurations, again at the 50 calls per sec-
ond load level. Using TCP introduces about 47% more or
271K of overheads compared to using UDP. Within this in-
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Figure 8: CPU Profile Cycle Costs: Outbound
Proxy (50 cps)

crease, Kernel costs contribute 144K, while OpenSIPS-Core
and OpenSIP-Module contribute 102K. The remaining 25K
is contributed by libc and other functions.

The use of TLS introduces 75% of additional overhead
compared to the TCP case. TCP consumes about 840K cy-
cles whereas TLS costs about 1,470K cycles. Much of this
increase comes from RSA (233K cycles) because in this con-
figuration the proxy needs to perform one of the most costly
operations in the TLS handshake: RSA decryption of the
pre_master_secret using its private key. Another major
component of the increase is from MAC processing (65K
cycles), which is not only used to verify the encrypted mes-
sages but also to verify the server certificate and construct
the master_secret. Other OpenSSL overheads such as libssl
(34K) and other libcrypto functions (36K) also contribute.

Enabling TLS mutual authentication incurs about 1,790K
cycles or an additional 330K over the baseline TLS, most
of which comes from increased RSA costs (160K). Recall in
this case the server requests the client’s certificate which the
server verifies using RSA public key decryption. In addition,
the server performs another RSA public key decryption for
the client’s certificate verification message and also verifies
the certificate using the MAC algorithm. Indeed, we see
MAC costs increase by 10K cycles when mutual authenti-
cation is used. Kernel costs also increase by 45K cycles,
presumably due to additional network packets transmitted
and context switches between user and kernel space.

However, enabling TLS session reuse reduces the overhead
by 15% compared to the baseline TLS case, or by about
200K cycles. Most of this overhead is explained by the re-
duction in RSA costs, which shrink from 233K cycles to only
10K cycles. This is because in the session reuse case, no key
exchange and certificate verification is required. MAC costs
remain, however, since new cryptographic keys are still com-
puted for data encryption.

It is worth noting that the TLS mutual authentication
test above also includes SIP proxy authentication. While
TLS mutual authentication is used to authenticate and au-
thorize “client systems”, SIP proxy authentication is used to
authenticate and authorize “users”.

4.3 Inbound Proxy

Figure 9: Peak Throughput: Inbound Proxy

Figure 9 shows the peak throughput of the inbound proxy
mode, where SIP proxy authentication is not enabled. The
figure shows two versions of OpenSIPS: the original version
and one with a modification we developed, denoted “with
timeout fix” in the graph. We start by explaining the per-
formance problem we discovered and how we solved it.

We examined the original OpenSIPS CPU profile under
the peak throughput for TCP and TLS. Surprisingly, we
found that 50% of the CPU cycles in the TCP case and 20%
percent of the CPU cycles in the TLS case are spent in two
functions, tcp_main_loop and tcp_receive_loop. More de-
tailed profiling reveals that the overhead in the two functions
are primarily the cost of two timeout mechanisms used to
close the TCP connections which are no longer in use. In
the inbound proxy case, the timeout mechanism becomes
prominent because the UAS in our tests does not close the
TCP/TLS connection when the call is over. There can be
thousands of simultaneous TCP connections existing in the
TCP connection table. The current server code calls a time-

out function every time the epoll mechanism returns when
events are detected. Since the connection expiration time is
not linked to the corresponding hash key, during each call
to the timeout function, the entire TCP connection hash
table is traversed . Therefore, at high loads when the hash
table has thousands of entries, the time spent in the timeout
function becomes much larger than that of the case under
lower load.

We applied a fix to the existing OpenSIPS TCP connec-
tion timeout mechanism. Observing that the timeout is
based on a time tick with one second resolution, it makes
no sense to enter the timeout function more than once per
second. We therefore added a time tick check before calling
the timeout function. If the program has called the timeout
function during the current time tick value already, then it
will not enter the timeout function until the time tick value
is advanced. This simple fix turned out to have a drastic
effect on performance involving TCP and TLS, as shown in
Figure 9.

As can be seen, the TCP case and the TLS with session
reuse scenario enjoy the most obvious boosts in throughput,
by about 200% and 150% respectively. For example, in the
TCP inbound proxy test case, the contribution of the two
timeout functions to the total overhead reduces from 50%
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to a negligible 0.6%, and the total cost drops by 73%. In
addition, kernel costs shrink by 43%. CPU utilization at the
200 calls per second load level reduces from 95% to 20%.
The CPU utilizations at the peak throughput values with
the timer fix are in the range of 80% to 90%.

The other two scenarios, TLS and TLS with mutual au-
thentication, also see performance increases but the differ-
ences are less dramatic. The reason is that in the latter two
scenarios, the proportion of cryptographic overheads take a
greater part of the total cost, so reducing the OpenSIPS and
kernel overheads has a smaller impact.

From Figure 9, we see that the peak throughput with
TCP is about 24% of the UDP case. The peak through-
put of TLS is approximately 28% of the TCP case. Within
the TLS cases, adding TLS mutual authentication reduces
throughput by 29%, while enabling session reuse increases
throughput by 100%.

Figure 10: CPU Profile Cycle Costs: Inbound Proxy
(with Timeout Fix)

Figure 10 shows the CPU profiles for the several inbound
proxy configurations where the timeout fix has been applied.
In general, using TCP incurs 174% (250K) of additional
overhead compared to using UDP, 118K of which comes from
increase in Kernel and 94K from increases in OpenSIPS-
Model and OpenSIPS-Core. The remainder comes from libc
(8K) and other functions (30K). The use of TLS introduces
over 233% of additional overhead compared to the TCP case
(1,315K cycles vs. 394K). 212K cycles are contributed by
RSA, 173K by other libcrypto processing, 93K by MAC pro-
cessing, 44K by libssl, and 23K by AES. Kernel overheads
increase by 150K and OpenSIPS-Core by 110K.

Enabling mutual authentication incurs an additional 42%
overhead (550K cycles) over the baseline TLS. The majority
of that increase comes from RSA (260K). MAC processing
is also increased by 310K.

Enabling TLS session reuse reduces costs by 46% com-
pared to the base TLS case, with total costs falling from
1,315K to 710K or about 600K cycles. Reduced RSA pro-
cessing contributes 200K of those reductions; other libcrypto
costs drop by 135K; MAC overheads are reduced by 40K;
libssl costs shrink by 20K.

In this configuration, the main RSA costs in the normal
TLS case come from the proxy verifying the UAS’s certifi-

cate and the proxy encrypting the pre_master_secret to
be sent to the UAS. The additional increase in RSA over-
heads in the mutual TLS configuration is mainly because
the proxy needs to sign the client authentication message
using its private key.

An interesting observation from this figure is the cost of
MAC functions, which are substantially higher than in the
previous proxy scenarios. This is because the proxy in the
inbound mode acts as TLS client and needs to verify the
certificates presented by the UAS, which was not present in
the outbound mode. In addition, in the mutual TLS case,
the inbound proxy needs to perform RSA encryption using
its own private key and to sign the certificates using the
MAC algorithm. These overheads are exhibited in the pro-
files. Furthermore, in the TLS with session reuse case, the
MAC costs are significantly reduced, indicating that a large
amount of the MAC cost is associated with the RSA key ex-
change phase, rather than during the bulk data encryption.

4.4 Local Proxy

Figure 11: Peak Throughput: Local Proxy

Figure 11 shows the peak throughputs of various configu-
rations in the local proxy mode, both with and without the
timeout fix described in Section 4.3, and with SIP authen-
tication enabled. We see the timeout fix has a substantial
impact on performance for both the baseline TCP case and
for TLS when session reuse is enabled, where TCP overheads
are significant. The timeout fix makes less of an impact on
the other TLS cases because in those cases the TLS over-
heads account for a larger proportion of the total cost. For
the remainder of this Section, we focus our analysis on the
configurations where the timeout fix is applied.

The average CPU utilizations in the four configurations
with the timeout fix are between 80% to 90%. We see that
the peak throughput with TCP is around 53% of the UDP
case, while the peak throughput with TLS is approximately
37% of the TCP case. Within the TLS cases, adding TLS
mutual authentication reduces throughput by 33%, while
enabling session reuse increases throughput by 66%.

Figure 12 shows the CPU profile results for the local proxy
mode with the timeout fix. In general, the use of TCP in-
curs 58% of additional overhead compared to the baseline
UDP case. 186K of this is contributed by Kernel, 108K
by OpenSIPS-Core and OpenSIPS-Module, 10K by libc and
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Figure 12: CPU Profile Cycle Costs: Local Proxy
(with Timeout Fix)

30K by other functions. Using TLS introduces over 166%
of additional overhead compared to the TCP case. To-
tal cycles increase by 1,500K from 900K to 2,400K. RSA
contributes 434K to that increase, followed by kernel over-
heads 240K, MAC processing 219K, other libcrypto func-
tions 174K, OpenSIPS-Core 140K, libssl 67K, and AES 36K.

Enabling TLS mutual authentication incurs an additional
32% overhead over the baseline TLS, increasing total costs
about 800K from 2,400K to 3,170K. Additional RSA over-
heads contribute 375K of the increase, 125K from kernel,
100K from MAC, 70K from libcrypto, 45K from OpenSIPS-
Core, and 5K from libssl.

Enabling TLS session reuse reduces the cost relative to
the baseline TLS case by 38%. Cycles shrink by 900K from
2,400K to 1,500K. RSA savings contribute 415K to the dif-
ference, followed by MAC 130K, other libcrypto functions
110K, kernel 80K, OpenSIPS 50k, libssl 25k.

The MAC cost is significantly reduced in the TLS with
session reuse case, indicating that a large amount of the
MAC cost is associated with the RSA public key exchange
phase, as discussed in the inbound proxy case in Section 4.3.

5. RELATED WORK
SSL/TLS performance has been studied by a number of

researchers. However, almost all these studies are based
on SSL/TLS Web servers. Apostolopoulos et al. [5] found
that the overhead due to TLS can reduce the number of
HTTP transactions handled by up to two orders of magni-
tude. Kant et al. [21] investigated the architectural impact
of SSL, and concluded that the use of SSL increases the com-
positional cost of transactions by a factor of 5 − 7. Zhao et
al. [44] provided an oprofile-based anatomy of SSL process-
ing for an SSL Web server. They found that about 70% of
the total processing time of an HTTP over SSL transaction
is spent in SSL processing. Coarfa et al. [10] measured the
difference of TLS server throughput by selectively replacing
TLS operations with no-ops, instead of using a CPU pro-
filer. Their results show that RSA computations are the
single most expensive operation in TLS, which accounts for
13 − 58% of the total time spent under different available
server CPU cycles and workload conditions.

Zeng and Cherkaoui [43] studied the performance of TLS
on a Common Open Policy Service (COPS) over TLS envi-
ronment. The results of their study showed that establishing
a COPS over TLS session took about a thousand times as
much as needed for a pure COPS connection without TLS.

Many researchers have studied SIP server performance, al-
beit without TLS. Schulzrinne et al. presented SIPstone [40],
a suite of SIP benchmarks for measuring SIP server perfor-
mance on common tasks. Cortes [12] measured the per-
formance of four different stateful SIP proxy server imple-
mentations over UDP and reported throughput results from
90−700 cps. Nahum et al. [16, 24] showed experimental per-
formance results of the OpenSER SIP server under different
scenarios including stateful and stateless proxying, TCP and
UDP transport, with and without SIP proxy authentication.
Their results indicate that any of these configurations can
affect performance by a factor of 2 − 4. Their evaluated
SIP-over-TCP scenario corresponds to the TCP single con-
nection or the proxy chain mode in this paper. Oho and
Schulzrinne [25] studied the performance of the SIPd [38]
SIP server over the UDP and TCP transports. Their TCP
tests include the multiple connection mode between the SIP
proxy and the UA similar to the local proxy mode of this
paper. Ram et al. [30] provided more understanding of the
impact of TCP on SIP server performance using OpenSER.
They show that a substantial component of the performance
loss from using TCP is due to the process architecture in
OpenSER and provide improvements. Wright et al. [42]
studied the performance of SIP servers on multi-core sys-
tems. They proposed and evaluated several optimizations
to improve scalability up to eight cores.

Kim et al. [23] described a study of SIP with TLS, DTLS
and IPSec over TCP, UDP and SCTP. However, the work is
based on ns-2 [1] simulation and the scope of the evaluation
is on call setup delay in a two-hop SIP proxy scenario with
background traffic. Thus the focus is on delay as a function
of packet exchanges rather than server CPU overheads. Cha
et al. [9] also measured the call setup delay (along with voice
quality metrics such as mean option score) of a SIP-based
VoIP system implementation which contains both TLS and
S-MIME. But it is not clear what the software and hardware
used are, or what the call request rate during the measure-
ment is.

The most relevant work we found is from Salsano et al. [36]
who measured the throuhgput performance and processing
cost of SIP proxy server over UDP, TCP and also TLS. Their
test cases for stateful SIP proxy servers represent four of the
18 scenarios that we look at, essentially the UDP NoAuth,
UDP Auth, TCP Auth, and TLS Auth configurations, all
in the proxy chain mode. The total cost ratios of these
four scenarios in their work are 1:1.44:1.52:1.54, while the
corresponding ratios from our results are 1:4:5.2:6.7. These
numbers are not directly comparable because of the different
software and hardware platforms used in the two sets of
experiments. Salsano et al. used their own open source
SIP server implemented in Java using a 300 MHz Pentium
machines running either Linux or Windows 98/2000. We use
contemporary hardware and standard open-source software
implemented in C. As a result, the peak performance of the
two testbeds are also dramatically different. For example,
in the basic UDP NoAuth scenario, the peak throughput on
their testbed is 21 cps, compared to 2,400 cps on ours, a
factor of 100 difference in performance.
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One approach to reducing security overheads is to use a
hardware crypto accelerator, e.g., Sun’s Crypto 6000 card
[11]. While this can improve performance (e.g., the card
claims 13,000 1024-bit RSA operations per second), the cards
tend to be expensive (e.g., the list price for the board was
$1350 at the time of this writing). More importantly, in
many cases, much of the overhead we observed was in the
OpenSSL software libaries themselves (e.g., libssl, libssl-
other), rather than the crypto algorithms (libcrypto). Crypto
acceleration hardware will not help with these overheads.

6. CONCLUSIONS
Insecure UDP-based signaling is one major reason that ex-

poses SIP-based services to many common security threats.
We have evaluated and analyzed the impact of using TLS as
a transport on SIP server performance versus the standard
approach of SIP-over-UDP. Using an experimental testbed
with the OpenSIPS server, OpenSSL, Linux, and an Intel-
based server, we show that the performance with TLS can be
reduced significantly. We use application, library, and kernel
profiling to illustrate where different costs are incurred (e.g.,
extra RSA overheads when mutual authentication is used)
and how they can be avoided (i.e., RSA costs are nearly
eliminated when session reuse is effective).

In the best case, the baseline UDP performance is about
three times that with TLS (the proxy chain mode); in the
worst case, UDP is 17 times the performance than with TLS
(the local proxy with TLS and mutual authentication). The
performance results depend primarily on whether and how
frequent TLS connection establishment is performed, since
TLS session negotiation incurs expensive RSA public key
operations. In turn, session negotiation depends on how the
SIP proxy is deployed (as an inbound, outbound, or local
proxy) and how TLS is configured (with mutual authentica-
tion or session reuse). Bulk encryption costs such as 3DES
or AES, in contrast, are minimal, typically no more than
seven percent.

Implementation plays a role as well. We found several
performance bugs in OpenSIPS and OpenSSL, despite the
fact that they have mature code bases and large numbers
of users. When fixed, performance improved in some cases
from a few times up to an order of magnitude.

Network operators considering deploying SIP over TLS
will need to consider the extra resources required to provide
the same service quality as would be the case with UDP.
Costs can be reduced by maximizing the potential for persis-
tent TLS sessions, which avoid heavy connection setup costs.
These lessons may be appropriate for other protocols that
use TLS, especially if they tend to have short messages.
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ABSTRACT
The Session Initiation Protocol (SIP) server overload man-
agement has attracted interest since SIP is being widely de-
ployed in the Next Generation Networks (NGN) as a core
signaling protocol. Yet all existing SIP overload control work
is focused on SIP-over-UDP, despite the fact that TCP is in-
creasingly seen as the more viable choice of SIP transport.
This paper answers the following questions: is the existing
TCP flow control capable of handling the SIP overload prob-
lem? If not, why and how can we make it work? We provide
a comprehensive explanation of the default SIP-over-TCP
overload behavior through server instrumentation. We also
propose and implement novel but simple overload control
algorithms without any kernel or protocol level modifica-
tion. Experimental evaluation shows that with our mech-
anism the overload performance improves from its original
zero throughput to nearly full capacity. Our work leads to
the important general insight that the traditional notion of
TCP flow control alone is incapable of managing overload
for time-critical session-based applications, which would be
applicable not only to SIP, but also to a wide range of other
common applications such as database servers.

1. INTRODUCTION
The Session Initiation Protocol (SIP) [34] is an application

layer signaling protocol for creating, modifying, and termi-
nating media sessions in the Internet. SIP has been adopted
by major standardization bodies including 3GPP, ITU-T,
and ETSI as the core signaling protocol of Next Generation
Networks (NGN) for services such as Voice over IP (VoIP),
conferencing, Video on Demand (VoD), presence, and In-
stant Messaging (IM). The increasingly wide deployment of
SIP has raised a requirement for SIP server overload man-
agement solutions [33]. SIP server can be overloaded for
many reasons such as emergency-induced call volume, flash
crowds generated by TV programs (e.g., American Idol),
special events such as “free tickets to the third caller”, or
denial of service attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
IPTComm 2010, 2-3 August, 2010Munich, Germany
Copyright 2010 ACM ...$10.00.

Although a SIP server is an application server, the SIP
server overload problem is distinct from other well-known
application server such as HTTP overload because in the
SIP architecture, multiple server hops are common. There
are also many SIP application level retransmission timers,
and there is a time-critical session completion requirement.
SIP’s built-in session rejection mechanism is known to be
unable to manage overload [33] because it could cause the
server to spend all cycles rejecting messages and result in
congestion collapse. If, as often recommended, the rejected
sessions are sent to a load-sharing SIP server, the alterna-
tive server will soon also be generating nothing but rejection
messages, leading to a cascading failure. Hilt et al. [40, 41]
articulate a SIP overload control framework based on aug-
menting the current SIP specification with application level
feedback between SIP proxy servers. The feedback, which
may be rate-based or window-based, pushes the burden of
rejecting excessive sessions from the target server to its up-
stream servers and thus prevents the overload. Detailed SIP
application level feedback algorithms and their effectiveness
have been demonstrated by a number of researchers, e.g.,
Noel [27], Shen [37] and Hilt [19].

As far as we know, all existing SIP overload control de-
sign and evaluation focus on SIP-over-UDP, presumably be-
cause UDP is still the common choice for today’s SIP op-
erational environment. However, SIP-over-TCP is getting
increasingly popular and seen as a more viable SIP trans-
port choice for a number of reasons, such as the need for
securing SIP signaling over TLS/TCP [1, 32, 34, 36] (There
is also a newer TLS version - Datagram TLS, which runs over
UDP, but its deployment popularity is not clear), support
for message sizes exceeding the maximum UDP datagram
size [34], facilitation of firewall and NATs traversal [28], and
potentially overload control.

The SIP-over-TCP overload control problem differs in two
main aspects from the SIP-over-UDP overload control prob-
lem. One is TCP’s built-in flow control mechanism which
provides an inherent, existing channel for feedback-based
overload control. The other is the removal of many applica-
tion layer retransmission timers that exacerbates the over-
load condition in SIP-over-UDP. Nahum et al. [9] have ex-
perimentally studied SIP performance and found that over-
load leads to congestion collapse for both SIP-over-TCP and
SIP-over-UDP. Their focus, however, is not on overload con-
trol so they do not discuss why SIP-over-TCP congestion
collapse happens or how to prevent it. Hilt et al. [19] have
shown simulation results by applying application level feed-
back control to SIP servers with TCP-specific SIP timers but
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without including a TCP transport stack in the simulation.
This paper systematically addresses the SIP-over-TCP over-

load control problem through an experimental study and
analysis. To the authors’ knowledge, our paper is the first
to provide a comprehensive answer to the following ques-
tions: why is there still congestion collapse in SIP-over-TCP
despite the presence of the well-known TCP flow control
mechanism and much fewer SIP retransmission timers? Is
there a way we can utilize the existing TCP infrastructure to
solve the overload problem without changing the SIP proto-
col specification as is needed for the UDP-based application
level feedback mechanisms?

We find that the key reasons why TCP flow control feed-
back does not prevent SIP congestion collapse has to do
with the session-based SIP load characteristics and the fact
that the session needs to be established within the time-
out threshold. Different messages in the message flow of the
same SIP session arrive at different times from upstream and
downstream SIP entities; start-of-session requests trigger all
the remaining in-session messages and are therefore espe-
cially expensive. The transport level connection-based TCP
flow control, without knowing the causal relationship among
the messages, will admit too many start-of-session requests
and result in a continued accumulation of in-progress ses-
sions in the system, leading to large queuing delays. When
that happens, the TCP flow control creates back pressure
propagating to the session originators, adversely affecting
their ability to generate messages that could complete exist-
ing sessions. In the meantime, SIP response retransmission
still kicks in. The combined delayed message generation
and processing as well as response retransmission lead to
SIP-over-TCP congestion collapse.

Based on our observations, we propose a novel SIP over-
load control mechanisms within the existing TCP flow con-
trol infrastructure. To respect the distinction between start-
of-session requests and other messages, we introduce the
concept of connection split. To meet the delay requirements
and prevent retransmission, we develop smart forwarding
algorithms combined with buffer minimization. Our mech-
anisms contain only a single tunable parameter for which
we provide a recommended value. Implementation of our
mechanisms exploits existing Linux socket API calls and is
extremely simple. It does not require any modifications at
the kernel level, nor changes to the SIP or TCP specification.

We evaluate throughput, delay and fairness results of our
mechanisms on a common Intel-based Linux testbed using
the popular open source OpenSIPS server with up to ten
upstream servers overloading the target server at over ten
times the server capacity.

Our mechanism is best suited for the common case where
the number of upstream servers overloading the target server
at the same time is not excessively large, such as servers in
the core networks of big service providers. But we also point
out possible solutions when a large number of upstream
servers overload a single target server, such as when nu-
merous enterprise servers connect to the same server from a
big service provider.

Our research leads to the important insight that the tradi-
tional notion of TCP flow control alone is insufficient in pre-
venting congestion collapse for time-sensitive session-based
loads, which cover a broad range of applications, e.g., from
SIP servers to data center systems [42].

The remainder of this paper is structured as follows. Sec-

tion 2 describes related work. Section 3 provides some back-
ground on SIP and TCP flow and congestion control. Sec-
tion 4 describes the experimental testbed used for our ex-
periments. Section 5 explains the SIP-over-TCP congestion
collapse behavior. Section 6 and Section 7 develop and eval-
uate our overload control mechanism.

2. RELATED WORK
SIP overload falls into the broader category of applica-

tion server overload where, in particular, web server over-
load control [7, 12, 48] has been studied extensively. Al-
though most of the work on web server overload control uses
a request-based workload model, Cherkasova and Phaal [6]
presented a study using session-based workload, which is
closer to our SIP overload study. However their mechanism
uses the overloaded server to reject excessive loads, which is
known to be insufficient for SIP [33].

A number of authors [9, 28, 31, 36] have measured SIP
server performance over TCP, without discussing overload.
The SIP server overload problem itself has received inten-
sive attention only recently. Ejzak et al. [10] provided a
qualitative comparison of the overload in PSTN SS7 signal-
ing networks and SIP networks. Whitehead [45] described
a protocol-independent overload control framework called
GOCAP but its mapping to SIP is still being defined. Ohta [24]
explored the approach of using a priority queueing and bang-
bang type of overload control through simulation. Noel and
Johnson [27] presented initial results of a rate-based SIP
overload control mechanism. Sun et al. [39] proposed adding
a front end SIP flow management system to conduct over-
load control including message scheduling, admission con-
trol and retransmission removal. Sengar [35] combined the
SIP built-in backoff retransmission mechanism with a selec-
tive admittance method to provide server-side pushback for
overload prevention. Hilt et al. [19] provided a side-by-side
comparison of a number of overload control algorithms for a
network of SIP servers, and also examined different overload
control paradigms such as local, hop-by-hop and end-to-end
overload control. Shen et al. [37] proposed three window-
based SIP feedback control algorithms and compared them
with rate-control algorithms. Except for [19], all of the above
work on SIP overload control assumes UDP as the transport.
Hilt et al. [19] present simulation of application level feed-
back overload control for SIP server with only TCP-specific
SIP timers enabled, but their simulation does not include a
TCP transport stack.

The basic TCP flow and congestion control mechanisms
are documented in [22,29]. Modifications to the basic TCP
algorithm have been proposed to improve various aspects of
TCP performance, such as start-up behavior [20], retrans-
mission fast recovery [13], packet loss recovery efficiency [15,
25], or overall congestion control [2, 5]. There are also re-
search efforts to optimize the TCP algorithm for more re-
cent network architecture such as mobile and wireless net-
works [11, 47] and high-speed networks [17, 23], as well as
additional work that focuses not on modifying TCP flow
and congestion control algorithm itself, but on using dy-
namic socket buffer tunning methods to improve perfor-
mance [8, 18]. Another category of related work focuses on
routers, e.g., active buffer management [14, 26] and router
buffer sizing [43]. Our work differs from all the above in that
our metric is not the direct TCP throughput, but the appli-
cation level throughput. Our goal is to explore the existing
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Figure 1: Basic SIP call flow

TCP flow control mechanism for application level overload
management, without introducing TCP or kernel modifica-
tions.

There are also studies on TCP performance for real-time
media, e.g., [3,4,44]. Our work, however, addresses the ses-
sion establishment phase for real-time services, which has
very different load characteristics.

3. BACKGROUND
3.1 SIP Overview

SIP defines two basic types of entities: User Agents (UAs)
and servers. UAs represent SIP end points. SIP servers can
be either registrar servers for location management, or proxy
servers for message forwarding. SIP messages are divided
into requests (e.g., INVITE and BYE to create and terminate
a SIP session, respectively) and responses (e.g., 200 OK for
confirming a session setup).

SIP message forwarding, known as proxying, is a critical
function of the SIP infrastructure. Fig. 1 shows a typical
message flow of stateful SIP proxying where all SIP messages
are routed through the proxy with the SIP Record-Route

option enabled. Two SIP UAs, designated as User Agent
Client (UAC) and User Agent Server (UAS), represent the
caller and callee of a multimedia session. The UAC wishes
to establish a session with the UAS and sends an INVITE
request to proxy A. Proxy A looks up the contact address
for the SIP URI of the UAS and, assuming it is available,
forwards the message to proxy B, where the UAS can be
reached. Both proxy servers also send 100 Trying response
to inform the upstream SIP entities that the message has
been received. After proxy B forwards the message to the
UAS. The UAS acknowledges receipt of the INVITE with a
180 Ringing response and rings the callee’s phone. When the
callee actually picks up the phone, the UAS sends out a 200
OK response. Both the 180 Ringing and 200 OK make their
way back to the UAC. The UAC then generates an ACK
request for the 200 OK. Having established the session, the
media flows directly between the two endpoints. When the
conversation is finished, the UAC “hangs up” and generates
a BYE request that the proxy servers forward to the UAS.
The UAS then responds with a 200 OK response which is
forwarded back to the UAC.

SIP is an application level protocol on top of the transport
layer. It can run over any common transport layer proto-

cols, such as UDP, TCP and SCTP [38]. SIP defines quite
a number of timers. One group of timers is for hop-to-hop
message retransmissions in case a message is lost. These re-
transmission timers are not used when TCP is the transport
because TCP already provides a reliable transfer. There is
however a retransmission timer for the end-to-end 200 OK
responses which is enabled even when using TCP transport,
in order to accommodate circumstances where not all links
in the path are using reliable transport. The 200 OK re-
transmission timer is shown in Fig. 2. The timer starts with
T1 = 500 ms and doubles until it reaches T2 = 4 s. From
then on the timer value remains at T2 until the total time-
out period exceeds 32 s, when the session is considered to
have failed. The UAC should generate an ACK upon receiv-
ing a 200 OK. The UAS cancels the 200 OK retransmission
timer when it receives a corresponding ACK.





























Figure 2: 200 OK retransmission

3.2 Types of SIP Server Overload
There are many causes to SIP overload, but the resulting

SIP overload cases can be grouped into either of the two
types: proxy-to-proxy overload or UA-to-registrar overload.









(a) proxy-to-proxy overload



(b) UA-to-
registrar overload

Figure 3: Types of SIP server overload

A typical proxy-to-proxy overload topology is illustrated
in Fig. 3(a), where the overloaded proxy server is connected
to a relatively small number of upstream proxy servers. The
overloaded server in Fig. 3(a) is also referred to as a Receiv-
ing Entity (RE) and its upstream servers are also referred to
as Sending Entities (SEs) [41]. One example of the proxy-
to-proxy overload is a special event like “free tickets to the
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third caller”, also known as flash crowds. Suppose RE is the
service provider for a hotline. SE1, SE2 and SE3 are three
service providers that reach the hotline through RE. When
the hotline is activated, RE is expected to receive a large
call volume to the hotline from SE1, SE2 and SE3 that far
exceeds its usual call volume, potentially putting RE into
overload.

The second type of overload, known as UA-to-registrar
overload, occurs when a large number of UAs overload their
next hop server. A typical example is avalanche restart,
which happens when power is just restored after a mass
power failure in a large metropolitan area and a huge num-
ber of SIP devices boot up trying to perform registration si-
multaneously. This paper only discusses the proxy-to-proxy
overload problem.

3.3 TCP Window-based Flow Control Mech-
anism

TCP is a reliable transport protocol with its built-in flow
and congestion control mechanisms. Flow control is exer-
cised between two TCP end points. The purpose of TCP
flow control is to keep a sender from sending so much data
that overflows the receiver’s socket buffer. Flow control is
achieved by having the TCP receiver impose a receive win-
dow on the sender side indicating how much data the receiver
is willing to accept at that moment; on the other hand, con-
gestion control is the process of a TCP sender imposing a
congestion window by itself to avoid congestion inside the
network. Thus, a TCP sender is governed by both the
receiver flow control window and sender congestion control
window during its operation.

The focus of our work is on using TCP flow control since
we are interested in the receiving end point being able to
deliver transport layer feedback to the sending end point and
we want to see how it could facilitate higher layer overload
control. We illustrate the TCP flow control architecture in
Fig. 4. A socket level TCP connection usually maintains a
send buffer and a receive buffer at the two connection end
points. The receiver application reads data from the receive
buffer to its application buffer. The TCP receiver computes
its current receive buffer availability as its advertised window
to the TCP sender. The TCP sender never sends more data
than an effective window size derived based on the receiver
advertised window and data that has been sent but not yet
acknowledged.

4. EXPERIMENTAL TESTBED AND MET-
RICS

4.1 Server and Client Software
We evaluated the Open SIP Server (OpenSIPS) version

1.4.2 [30], a freely-available, open source SIP proxy server.
OpenSIPS is a fork of OpenSER, which in turn is a fork of
the SIP Express Router (SER) [21]. These sets of servers
represent the de facto open source version of SIP server,
occupying a role similar to that of Apache for web servers.
We also implemented our overload control mechanisms on
the OpenSIPS server.

We choose the widely used open source tool, SIPp [16]
(May 28th 2009 release) to generate SIP traffic. We also
make corrections to SIPp for our test cases. For example,
we found that the SIPp does not trigger the 200 OK retrans-
mission timer over TCP as required by the SIP specification,
and therefore we added it.

4.2 Hardware, Connectivity and OS
The overloaded SIP RE server has 2 Intel Xeon 3.06 GHz

processors with 4GB RAM. However, for our experiments,
we only use one processor because SIP performance under
multiple processors or a multi-core processor is itself a topic
that requires separate attention [46]. We use up to 10 ma-
chines for SEs, and up to 10 machines for UACs. All the SE
and UAC machines either have 2 Intel Pentium 4 3.00 GHz
processors with 1GB memory or 2 Intel Xeon 3.06 GHz pro-
cessors and 4GB RAM. The server and client machines com-
municate over copper Gigabit or 100 Mbit Ethernet. The
round trip time measured by the ping command between
the machines is around 0.2 ms. More constrained link trans-
mission conditions such as longer delays or explicit packet
losses may be considered in future experiments.

All of our testbed machines run Ubuntu 8.04 with Linux
kernel 2.6.24. The default TCP send buffer size is 16 KB
and the default TCP receive buffer size is 85KB. Since the
Linux operating system uses about 1/4 of the socket receive
buffer size for bookkeeping overhead, the estimated effective
default receive buffer size is about 64KB. In the rest of the
paper we use the effective value to refer to receive buffer
sizes. The SIP server application that we use allocates a
default 64KB application buffer.

Linux provides the setsockopt API call to allow appli-
cations to manipulate connection-specific send and receive
socket buffer sizes. Linux also supports API calls that en-
able the applications to retrieve real-time status information
about the underlying TCP connection. For example, using
the ioctl call, the application can learn about the amount
of unsent data currently in the socket send buffer.

4.3 Test Suite, Load Pattern and Performance
Metrics

We wrote a suite of Perl and Bash scripts to automate run-
ning the experiments and analyzing results. Our test load
pattern is the same as in Fig 1. For simplicity but without
loss of generality, we do not include call holding time and
media. That means, the UAC sends a BYE request imme-
diately after sending an ACK request. In addition, we do
not consider the time between the ringing and the actual
pick-up of the phone. Therefore, the UAS sends a 200 OK
response immediately after sending a 180 Ringing response.
In order to facilitate the load generation for overload tests,
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we also introduced extra cryptographic functions to the au-
thentication operations in the SIP sessions to contrain the
default server capacity.

Our main performance metrics is the server throughput,
i.e., number of sessions successfully set up per-second by re-
ceiving the ACK to 200 OK at UAS. We also examine a delay
metrics similar to the Post Dial Delay (PDD) in PSTN net-
works, which roughly corresponds to the time from sending
the first INVITE to receiving the 200 OK response. The com-
bination of both throughput and delay metrics actually gives
us the system goodput. A number of other metrics such as
CPU utilization and server internal message processing rate
are also used in explaining the results.

5. DEFAULT SIP OVER TCP OVERLOAD
PERFORMANCE

Figure 5: Default SIP-over-TCP throughput

We start our investigation with a single SE - single RE
testbed with all out-of-the-box configurations. The SE is
connected to a machine acting as many UACs that generate
the desired rate of SIP requests; the RE is connected to a
machine acting as many UASes that receive and process SIP
requests. The throughput results in calls per second (cps)
of this testbed are shown in Fig. 5. It can be seen that the
throughput immediately collapses as the load approaches
and exceeds the server capacity at around 65 to 70 cps. In
this section, we explore the detailed causes of this behavior
through server instrumentation.

We examine a particular run at a load of 150 cps which
is about 2.5 times the server capacity. Fig. 6 depicts the
per second message processing rate. The four figures show
INVITE, BYE, 200 OK and ACK, respectively. It should be
noted that the number of 180 Ringings, not shown in these
figures, basically follows the number of INVITEs processed,
because the UAS is not overloaded and can always deliver
responses to RE. For the same reason, the number of 200
OKs to BYEs which are also not shown, follows the number of
BYEs. Along with the individual message processing rates,
Fig. 6 also includes the current number of active sessions
in the RE. The active sessions are those sessions that have
been started by an INVITE but have not yet received a BYE.
Since the call holding time is zero, in an ideal situation, any
started sessions should be terminated immediately, leaving
no session outstanding in the system. In a real system, the
number of active sessions could be greater than zero. The
larger the number of such in-progress sessions, the longer
the delay that those sessions will experience.

Fig. 6 indicates that 200 OK retransmission happens al-
most immediately as the test starts, which means the end-
to-end round trip delay immediately exceeds 500ms. This is
caused by the large buffers at the different stages of the net-
work system, which allow too many sessions to be accepted.
The SIP session load is not atomic. The INVITE request is
always first introduced into the system and then come the
responses and follow-up ACK and BYE requests. When too
many INVITEs are admitted to the system, the BYE gener-
ation rate cannot keep up with the INVITEs, resulting in a
large number of active sessions in the system and also a large
number of messages queued in various stages of the buffers.
These situations translate to prolonged delays in getting the
ACK to 200 OK to the UAS. More specifically, assuming the
server’s capacity is 65 cps, if the sessions are indeed atomic,
each session will take a processing time of 15.4 ms. In or-
der to avoid 200 OK retransmission, the end-to-end one-way
delay cannot exceed 250 ms, corresponding to a maximum
of about 16 active sessions in the system. Factoring in the
non-atomic nature of the session load, this maximum limit
could be roughly doubled to 32. But with the default sys-
tem configuration, we have a 16KB TCP socket send buffer,
and 64 KB socket receive buffer, as well as 64 KB SIP server
application buffer. Considering an INVITE size of around
1KB, this configuration means the RE can be filled with up
to 130 INVITEs at one time, much larger than the thresh-
old of 32. All these INVITEs contribute to active sessions
once admitted. In the experiment, we see the number of
active sessions reaches 49 at second 2, immediately causing
200 OK retransmissions. 200 OK retransmissions also trig-
ger re-generated ACKs, adding more traffic to the network.
This is why during the first half of the time period in Fig. 6,
the number of ACKs processed is higher than the number
of INVITEs and BYEs processed. Eventually the RE has ac-
cumulated too many INVITEs both in its receive buffer and
application buffer. So its flow control mechanism starts to
advertise a zero window to the SE, blocking the SE from
sending additional INVITE requests. Subsequently the SE
stops processing INVITE requests because of the send block
to the RE. This causes SE’s own TCP socket receive buffer
and send buffer to get full as well. The SE’s flow control
mechanism then starts to advertise a zero window to UAC.
This back pressure on UAC prevents the UAC from sending
anything out to the SE. Specifically, the UAC can neither
generate new INVITE requests, nor generate more ACK and
BYEs, but it could still receive responses. When this situa-
tion happens, retransmitted 200 OKs received can no longer
trigger retransmitted ACKs. Therefore, the number of ACKs
processed in the later half of the graph does not exceed the
number of INVITEs or BYEs. The number of ACKs actu-
ally becomes similar to the number of BYEs because BYEs
and ACKs are generated together at the same time in our
workload.

It can further be seen that under the default settings, the
INVITE and BYE processing tends to alternate with grad-
ually increasing periods as the test proceeds. During each
period, the INVITE portion is increasingly larger than the
BYE portion. Since the number of active sessions always
increases with INVITE processing, and decreases with BYE
processing, those processing patterns lead to the continued
growth of the number of active sessions in the RE and ex-
acerbate the situation.

In addition to observing the per-second message process-

79



(a) INVITE (b) BYE

(c) 200 OK (d) ACK

Figure 6: RE message processing rates and number of active sessions in default SIP-over-TCP test

ing rate at RE, we also confirm the behavior from the total
number of messages processed at the UAS, along with the
number of active sessions at RE as in Fig. 7. Note that the
numbers of INVITEs received, 180 Ringing and initial 200 OK
(not retransmissions) messages sent are the same, because
180 Ringing and 200 OK are generated by UAS immediately
upon receiving an INVITE. Similarly the number of ACK,
BYE, and 200 OK to BYEs are the same, because ACK and
BYE are generated at the same time at the UAC and 200 OK
to BYE is immediately generated upon receiving BYE at the
UAS. In Fig. 7, initially between 0 and the 38th second, the
numbers of ACKs and BYEs received are roughly half of the
total INVITEs received. Therefore, the number of active ses-
sions in the RE and the number of ACKs received at the UAS
are roughly the same. Then RE enters the abnormal INVITE
processing and BYE processing alternating cycle. During the
period when RE is processing ACKs and BYEs, the number
of active sessions decreases. During the period when RE is
processing INVITEs, no ACKs are forwarded, so the number
of ACKs remains constant.

200 OK retransmission starts at second 2. The total period
of 200 OK retransmission lasts 32 seconds for each individual
session, therefore the expiration of the first session that has
exhausted all its 200 OK retransmissions without receiving
an ACK happens at the 34th second. The actual 200 OK
retransmission timeout we see from Fig. 7 is at the 66th
second. The difference between the 66th and 34th second
is 32 seconds, which is a configured maximum period UAS
waits to receive the next message in sequence, in this case
the ACK corresponding to the 200 OK.

Figure 7: Total number of messages processed at
UAS and number of active sessions at RE
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Starting from the 69th second, we see a category of mes-
sages called INVITE Unexpected. These are ACKs and BYEs
that arrive after the admitted sessions have already timed
out at the UAS. These ACKs and BYEs without a matching
session also create session states at the SIPp UAS, which
normally expect a session message sequence beginning with
an INVITE. Since those session states will not receive other
normal in-session messages, at the 101th second, or after
32 seconds of UAS receive timeout period, those session states
start to time out, reflected in the figure as the INVITE
Timeout curve. Finally, a very important overall observa-
tion from Fig. 7 is that at a certain point, the 77th second,
the number of timely received ACKs virtually stopped grow-
ing, causing the throughput to drop to zero.

(a) UAC

(b) UAS

Figure 8: Screen logs in default SIP-over-TCP test

We also show the final screen logs at the UAC and UAS
sides for the test with default configurations in Fig. 8, where
status code 202 is used instead of 200 to differentiate the 200
OK to BYE from the 200 OK to INVITE. Earlier in this sec-
tion we have explained the 200 OK retransmissions, 200 OK
timeouts, INVITE timeouts, and INVITEs unexpected mes-
sages. We can see that among the 25,899 INVITEs received
at the UAS side, 22,078 eventually time out and only 3,821
receive the final ACK. The UAC actually sends out a total
of 10,106 ACKs and BYEs. The remaining 6,285 ACKs and
BYEs are eventually delivered to UAS but are too late when
they arrive, therefore those BYEs do not trigger 202 OK and
we see 6,285 202 OK timeouts at the UAC. At the UAS
side, those 6,285 ACKs and BYEs establish abnormal session
states and eventually time out after the 32 s receive time-
out for INVITE. The unexpected messages at the UAC side
are 408 Send Timeout messages triggered at the SIP servers
for the BYEs that do not hear a 202 OK back. Note that
the number of those messages (3,567) is smaller than the
exact number of BYEs that do not receive 202 OK (6,285).
This is because the remaining 2,718 408 Send Timeout mes-
sages arrive after the 202 OK receive timeout and therefore
those messages were simply discarded and not counted in
the screen log.

Finally, we also measure the PDD and find that even
without considering whether ACKs are delivered successfully,
73% of the INVITEs have PDDs between 8 and 16 seconds,
which are most likely beyond the human interface accept-
ability limit. Another 24% have PDDs between 4 to 8 sec-
onds, which might be close to the acceptable limit.

6. SIP-OVER-TCP OVERLOAD CONTROL
MECHANISM DESIGN

From the SIP-over-TCP congestion collapse, we learned
a key lesson that we must limit the number of INVITEs we
can admit to avoid too many active sessions accumulating in
the system. For all admitted INVITEs, we need to make sure
the rest of the session messages complete within finite delay.
In this section, we propose specific approaches to address
these issues, namely connection split, buffer minimization,
and smart forwarding.

6.1 Connection Split and Buffer Minimization








 




















Figure 9: ECS + BM

First, it is clear that we only want to limit INVITEs but not
non-INVITEs because we do not want to drop messages for
sessions already accepted. In order to have a separate con-
trol of INVITEs and non-INVITE messages, we split the TCP
connection from SE to RE into two, one for INVITE requests,
and the other for all other requests. In other words, the RE
will listen on two TCP connections, and the SE makes sure
that it will send all INVITEs to one connection and all non-
INVITEs to the other connection. Second, in order to limit
the number of INVITEs in the system and minimize delay, we
minimize the total system buffer size between the SE and the
RE for the INVITE connection, which includes three parts:
the SE TCP socket send buffer, the RE TCP socket receive
buffer and the RE SIP server application buffer. We call
the resulting mechanism Explicit Connection Split + Buffer
Minimization (ECS+BM) and illustrate it in Fig. 9.

We find, however, although ECS+BM effectively limits
the number of INVITEs that could accumulate at the RE,
the resulting throughput differs not much from that of the
default configuration. The reason is that, since the number
of INVITEs SE receives from UAC remains the same and
the INVITE buffer sizes between SE and RE are minimized,
the INVITE pressure merely moves a stage back and accu-
mulates at the UAC-facing buffers of the SE. Once those
buffers, including the SE receive buffer and SE SIP server
application buffer, have been quickly filled up, the system
delay dramatically increases. Furthermore, the UAC is then
blocked from sending to SE and unable to generate ACKs
and BYEs, causing the number of active sessions in the RE
to skyrocket. In conclusion, ECS+BM by itself is insufficient
in preventing overload.
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Figure 10: Smart forwarding for ECS

6.2 Smart Forwarding
In order to release, rather than pushing back the exces-

sive load pressure present in the ECS+BM mechanism, we
introduce the Smart Forwarding (SF) algorithm as shown
in Fig. 10. This algorithm is enforced only for the INVITE
connection. When an INVITE arrives, the system checks
whether the current INVITE connection send buffer is empty.
If yes, the INVITE is forwarded; otherwise the INVITE is
rejected with an explicit SIP rejection message. This algo-
rithm has two advantages: first, although we can choose any
send buffer length threshold value for rejecting an INVITE,
the decision to use the emptiness criterion makes the algo-
rithm parameter-free; second, implementation of this algo-
rithm is especially easy in Linux systems because the current
send buffer occupancy can be retrieved by a simple standard
ioctl call.

Our resulting mechanism is then ECS+BM+SF. We eval-
uate its performance on our testbed from light to heavy
overload and find it achieving nearly full system capacity
all the time. Due to space limitation, we do not present the
results of the ECS+BM+SF here, but discuss in more de-
tail an even simpler mechanism developed based on it called
ICS+BM+SF.

























Figure 11: Smart forwarding for ICS

6.3 Implicit Connection Split, Buffer Minimiza-
tion and Smart Forwarding (ICS+BM+SF)

Our results show that the ECS+BM+SF mechanism is
very effective. Even in high overload, the RE contains only
a few active sessions all the time, and achieves full capacity.
The only inconvenience is that it requires to establish two
separate connections for INVITEs and non-INVITEs. But if
the server is never backlogged, the queue size for both IN-
VITE and non-INVITE request connections should be close to
zero. In that case, the dedicated connection for non-INVITE
requests does not require the default large buffer setting ei-
ther. We therefore decide to merge the two split connections
back into one but still keep the minimized SE send buffer,
RE receive buffer and application buffer settings. We also
need to revise our smart forwarding algorithm accordingly,
as in Fig. 11. Since there is only a single request connection
now, the algorithm performs an additional check for INVITE
requests and rejects it if the send buffer is non-empty. Oth-
erwise, the INVITE is forwarded. All non-INVITE requests
are always forwarded. Although the revised mechanism no
longer requires a dedicated connection for INVITEs, it treats
INVITEs and non-INVITEs differently. Therefore, we call
this revised mechanism Implicit Connection Split (ICS) as
opposed to the previous ECS mechanism.

Figure 12: RE message processing rates with
ICS+MB+SF

We evaluate the resulting ICS+BM+SF mechanism and
compare its performance with the default configuration in
the same scenario as in Section 5 with one SE overloading
an RE at an offered load of 2.5 times the server capacity.
Fig. 12 shows the average message processing rate and the
number of active sessions in the RE. We can see how this fig-
ure differs dramatically from Fig. 6. Here, the values of IN-
VITE, 200 OK, ACK, and BYE processing rate overlap most
of the time, which explains why the number of active ses-
sions remains extremely low, between 0 and 3, all the time.
Furthermore, from the overall UAC and UAS screen logs in
Fig. 13, we see that among the 35,999 INVITEs that are gen-
erated, 22,742 of them are rejected by the smart forwarding
algorithm. The remaining 13,257 sessions all successfully
get through, without triggering any retransmission or un-
expected messages - a sharp contrast to Fig. 8. The good
performance is also shown by the PDDs. We find that over
99.8% of the sessions have a delay value smaller than 30ms,
far smaller than the 500 ms 200 OK retransmission thresh-
old. Finally, the system achieves full capacity as confirmed
by the full CPU utilization observed at the RE.

6.4 Parameter Tuning
Our ICS+BM+SF mechanism in section 6.3 contains three
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(a) UAC

(b) UAS

Figure 13: Screen logs with ICS+MB+SF

minimized buffer sizes: the SE send buffer at 2KB, RE re-
ceive buffer at 1KB and RE application buffer at 1,200 bytes.
We conducted extensive tests to explore the impact of tun-
ing these three buffer sizes, and we summarize the results in
this section.

First, we find that since the RE receive buffer and RE
application buffer are connected in series, they do not have
to be minimized at the same time. Minimizing either one of
them achieves similar near-capacity throughput. However,
recall that enlarging either RE buffer size could hold mes-
sages in the RE and increase queuing delay. For example,
we plot the PDD distribution for four test cases in Fig. 14.
Two of those cases compare the delay when the RE appli-
cation buffer is set to 2KB vs. the default 64KB, while
the RE receive buffer is at its default value of 64 KB. Most
of the delays in the small application buffer case are below
375 ms, and as a result we observe no 200 OK retransmis-
sions at the UAS side. In the large application buffer case,
however, nearly 70% of the sessions experience a PDD be-
tween 8 seconds and 32 seconds, which will most likely be
hung up by the caller even if the session setup messages
could ultimately complete. Not surprisingly, we also see a
large number of 200 OK retransmissions in this case.

Figure 14: PDD comparison for RE side buffer tun-
ing (AB: Application Buffer; RB: Receive Buffer)

The other two cases in Fig. 14 compare the PDD when
the receive buffer is set to 2KB vs. the default 64KB, while
the application buffer is at its default value of 64 KB. In the

small receive buffer case, over 99.7% of the sessions have a
PDD below 30ms, and there is certainly no 200 OK retrans-
missions at the UAS side. In the larger receive buffer case,
about 30% of the sessions have a PDD below 480 ms, and
the remaining 70% between 480 ms and 700 ms. Since a large
number of sessions experienced a round trip delay exceeding
500 ms, we see quite a number of 200 OK retransmissions at
the UAS side, too. Therefore, tuning the receive buffer is
preferable over tuning the application buffer, which matches
the intuition: the receive buffer is closer to the SE and pro-
duces more timely transport feedback than the application
buffer does.

Second, we find that the SE send buffer size actually does
not have to be minimized. This can be attributed to our
smart forwarding algorithm which already prevents exces-
sive non-INVITE messages from building up in the system.
Combined with minimized buffers at the RE, our mecha-
nism minimizes the number of active sessions in the system,
which means there will always be only a small number of
messages in the SE send buffer.

In summary, our investigation confirms that the only es-
sential tunable parameter of the ICS+BM+SF mechanism is
the RE receive buffer size. Therefore, we finally obtain our
extremely simple ICS+BM+SF mechanism as illustrated in
Fig. 15.














Figure 15: ICS+BM+SF

7. OVERALL PERFORMANCEOFOURSIP-
OVER-TCPOVERLOADCONTROLMECH-
ANISMS

In this section we evaluate the overall performance of our
ICS+BM+SF mechanism as shown in Fig. 15. To demon-
strate scalability, we test on three scenarios with 1 SE, 3 SEs
and 10 SEs, respectively.

7.1 Overall Throughput and PDD
Fig. 16 illustrates the throughput with and without our

control mechanism in the three test scenarios with varying
number of SEs and an offered load up to over 10 times the
capacity. The RE receive buffer was set to 2KB and the
SE send buffer and RE application buffer remain at their
default values. As we can see, in all test runs with our
control mechanisms, the overload throughput maintains at
close to the server capacity, even in the most constrained
case with 10 SEs and a load of 750 cps. Moreover, we
observe no single 200 OK retransmissions in any of those
tests.

We further compare the tests with different number of
SEs. Fig. 17 shows that the numbers of active sessions in
RE for the three scenarios roughly correspond to the ratio of
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Figure 16: Overall throughput of SIP-over-TCP:
with and without our overload control mechanism

Figure 17: Number of active sessions in RE in sce-
narios with varying number of SEs

the numbers of SEs (1:3:10), as would be expected because
in our testbed configuration each SE creates a new connec-
tion to the RE and is allocated a new set of RE buffers.
Increased number of active sessions causes longer PDDs, as
demonstrated in Fig. 18, where the overall trend and the 50
percentile values match the 1:3:10 ratio pretty well.

Fig. 17 and Fig. 18 also imply that if the number of SEs
keeps increasing, the system will eventually still accumulate
an undesirably large number of active sessions. The PDD
will also exceed the response retransmission timer value to
cause 200 OK retransmissions.

Thus, our mechanism is most applicable to cases where
the number of SEs is reasonably small, which however, does
cover a fairly common set of realistic SIP server overload
scenarios. For example, there are typical national service
providers deploying in total hundreds of core proxy and
edge proxy servers in a hierarchical manner. The result-
ing server connection architecture leaves each server with a
few to dozens of upstream servers.

7.2 RE Receive Buffer Tuning
The only tunable parameter in our mechanism is the RE

receive buffer size. We explore the impact of this parameter
under the most constrained case where there are 10 SEs
with a total load of 750 cps in Fig. 19. It is not surprising
that the receive buffer size cannot be too small because that
will cause a single message to be sent and read in multiple

Figure 18: PDD in scenarios with varying number
of SEs

Figure 19: Impact of RE receive buffer size on
Throughput

Figure 20: Impact of RE receive buffer size on PDD
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segments. After exceeding a certain threshold, the receive
buffer does not make difference in overload throughput, but
the smaller the buffer is, the lower the PDD, as shown in
Fig. 20. The PDD is roughly the same as round trip delay.
If the round trip delay exceeds 500 ms, we will start to see
200 OK retransmissions, as in the cases where the receive
buffer is larger than 3,070 bytes.

Overload control algorithms are meant to kick in when
overload occurs. In practice, a desirable feature is to require
no explicit threshold detection about when the overload con-
trol algorithm should be activated, because that always in-
troduces additional complexity, delay and inaccuracy. If we
keep our overload control mechanism on regardless of the
load, then we should also consider how our mechanism could
affect the system underload performance. We find that in
general our mechanisms have a pretty satisfactory underload
performance, meaning the throughput matches closely with
a below-capacity offered load as shown in Fig. 16, although
in some corner cases ICS’s underload performance is not as
good as ECS because ICS tends to be more conservative and
reject more sessions.

Overall, in order to scale to as many SEs as possible yet
minimizing the PDD, we recommend an RE receive buffer
size that holds roughly a couple of INVITEs.

7.3 Fairness
All our above tests with multiple SEs assume each SE

receiving the same request rate from respective UACs, in
which case the throughput for each UAC is the same. Now
we look at the situation where each SE receives different re-
quest rates, and measure the fairness property of the achieved
throughput.

Figure 21: Throughput: three SEs with incoming
load ratio 3:2:1

Fig. 21 shows the throughput of a 3 SE configuration with
the incoming offered load to the three SEs distributed at
a 3:2:1 ratio. As we can see, when the load is below total
system capacity, the individual throughputs via each SE fol-
low the offered load at the same 3:2:1 ratio closely. At light
to moderate overload until 300 cps, the higher load sources
have some advantages in competing RE resources. At higher
overload above 300 cps, each SE receives a load that is close
to or higher than the server capacity. The advantages of the
relatively higher load SEs are diminishing, and the three SEs
basically deliver the same throughputs to their correspond-
ing UACs.

Shen et al. [37] define two types of fairness for SIP server
overload: service provider-centric fairness and end user-centric

fairness. The former allocates the same portion of the over-
loaded server capacity to each upstream server; the latter
allocates the overloaded server capacity in proportion to
the upstream servers’ original incoming load. Our results
show that the system achieves service provider-centric fair-
ness at heavy overload. Obtaining end user-centric fairness
during overload is usually more complicated; some related
techniques are discussed in [37].

7.4 Additional Discussions
During our work with OpenSIPS, we also discover subtle

software implementation flaws or configuration guidelines.
For example, an SE could block on sending to an overloaded
RE. Thus, if there are new requests coming from the same
server at the upstream of the SE but are destined to other
REs that are not overloaded, those new requests cannot be
accepted either. This head-of-line blocking effect is clearly a
flaw that is hardly noticeable unless we conduct systematic
TCP overload tests.

Another issue is related to the OpenSIPS process con-
figuration. OpenSIPS employs a multi-process architecture
and the number of child processes is configurable. Earlier
work [36] with OpenSIPS has found that configuring one
child process yields an equal or higher maximum through-
put than configuring multiple child processes. However, in
this study we find that when overloaded, the existing Open-
SIPS implementation running over TCP with a single child
process configuration could lead to a deadlock between the
SE and RE servers. Therefore, we use multiple child pro-
cesses for this study.

8. CONCLUSIONS
We experimentally evaluated default SIP-over-TCP over-

load performance using a popular open source SIP server im-
plementation on a typical Intel-based Linux testbed. Through
server instrumentation, we found that TCP flow control
feedback cannot prevent SIP overload congestion collapse
because of lack of application context awareness at the trans-
port layer for session-based load with real-time requirements.
We develop novel mechanisms that effectively use existing
TCP flow control to aid SIP application level overload con-
trol. Our mechanism has three components: the first is
connection split which brings a degree of application level
awareness to the transport layer; the second is a parameter-
free smart forwarding algorithm to release the excessive load
at the sending server before they reach the receiving server;
the third is minimization of the essential TCP flow control
buffer - the socket receive buffer, to both enable timely feed-
back and avoid long queueing delay. Implementation of our
mechanisms is extremely simple without requiring any ker-
nel or protocol level modification. Our mechanisms work
best for the SIP overload scenarios commonly seen in core
networks, where a small to moderate number of SEs may
simultaneously overload an RE. For other scenarios where a
large number of SEs overload the RE, deploying our mech-
anism will still improve performance, but the degree of ef-
fectiveness is inherently constrained by the per-connection
TCP flow control mechanism itself. Since each SE adds to
the number of connections and subsequently to the total
size of allocated connection buffers at the RE, as the buffer
size accumulates, so does the delay. Indeed, the solution
to this numerous-SE-single-RE overload problem may ulti-
mately require a shift from the current push-based model
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to a poll-based model. Specifically, instead of allowing all
the SEs to send, the RE may advertise a zero TCP window
to most of the SEs and open the windows only for those
SEs that the RE is currently polling to accept loads. Future
work is needed in this area.

Our study sheds light both at software level and concep-
tual level. At the software level, we discover implementa-
tion flaws for overload management that would not be no-
ticed without conducting a systematic overload study, even
though our evaluated SIP server is a mature open source
server. At the conceptual level, our results suggest an aug-
mentation to the long-held notion of TCP flow control: the
traditional TCP flow-control alone is incapable of handling
SIP-like time-sensitive session-based application overload.
The conclusion may be generalized to a much broader ap-
plication space that share similar load characteristics, such
as database systems. Our proposed combined techniques in-
cluding connection split, smart forwarding and buffer mini-
mization are key elements to make TCP flow control actually
work for managing overload of such applications.
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ABSTRACT

Certain teleconferencing applications must host very large
number of participants that exceeds the capacity of a single
mixing media server. Traditionally multiple media servers
are connected in a cascading arrangement to meet the ca-
pacity requirement. This paper discusses the shortcomings
of the traditional approach such as lower audio quality and
unfairness of speaker selection. It then presents a novel ap-
proach that exploits the flexibility of Voice-over-IP and the
Session Initiation Protocol to move participants between a
main conference mixer and one or more media-distributing
replicators as their role change between active talk-listen and
listen-only. Benchmarking of an implementation of the repli-
cators on general-purpose computers shows that large capac-
ity can be achieved without specialized hardware. Moreover,
it is shown how this approach can augment an already de-
ployed teleconferencing system without modifying the ex-
isting telephony features, thereby illustrating the power of
modularity and application composition in the SIP servlet
environment.

1. INTRODUCTION

With the increased cost and security concerns of trav-
eling, and environmental concerns favoring telecommuting,
teleconferencing involve multiple users located in distant lo-
cations participating in audio, video and application sharing
sessions are becoming more prevalent both in the business
and consumer sectors. Teleconferences vary greatly in sizes,
i.e. number of participants, and the size influences imple-
mentation choices. For voice over IP (VoIP) teleconferences,
the main computational requirements are decoding of the
audio streams, detecting the loudest streams, mixing the se-
lected streams, encoding and packetize the mixed output,
and eventually transmitting to each participant. Small con-
ferences in the order of 10 participants can be supported by
present day computing devices without specialized dedicated
hardware. For example, the popular Skype service performs
audio mixing at the initiator’s computer and can support up
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Figure 1: A Two-Layer Cascading Conference

to 25 participants. The limit is constrained by the process-
ing power of the initiator’s endpoint as well as the available
bandwidth in this approach. Larger conferences are better
implemented using a centralized mixing media server. How-
ever, even purpose-built high-density mixers have limits on
the size of conferences, typically of the order of 1000 partic-
ipants.

There are certain applications that need to support even
larger number of participants, and cannot be supported read-
ily by a single media server. For example large enterprises
often host ‘all-hands town hall meetings’. Very large con-
ferences are also useful for training sessions. The difference
between very large conference and broadcast is that in the
former any participant can speak, for example to ask a ques-
tion.

To support these very large conferences, traditionally a
cascading conferences approach is used. This approach and
its drawbacks are discussed in the next section. They mo-
tivate a novel approach that is proposed in Section 3. Sec-
tion 4 discusses an implementation of the novel approach,
and how it can be integrated with an existing conferencing
system. Related work is presented in Section 5. Section 6
discusses some proposed future work.

2. CASCADING CONFERENCES

To extend beyond the port limit of a single media server,
multiple media servers can be arranged in a hierarchical
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manner [10, 18, 11]. Figure 1 shows a typical arrangement
with two layers in the hierarchy, where a number of ‘tribu-
tary’ mixers in turn act as participants in a main mixer.

As an illustrating example, the CMS-9000 product from
Radisys Corporation supports a maximum of 1800 ports on
one media server (a Media Processing Card or MPC-4) [12].
A conference may encompass all 1800 ports, but only a max-
imum 125 talk-listen participants are allowed, and the re-
maining 1675 participants are listen-only. An application
server can send control signal to the media server to change
a participant from talk-listen to listen-only and vice versa.
At any given time, the n loudest participants are added to
the media mix, where n is settable to 1 to 16.

If it is desired that all participants may speak at any time
without any user action, then without cascading the maxi-
mum conference size is 125. With cascading, there can be
at most 16 tributary mixers, and each tributary mixer may
have 125 − 1 = 124 participants. (One port on each tribu-
tary mixer is required to connect to the main mixer.) Thus
a maximum of 1984 participants may be supported, utilizing
two MPC-4 cards.

If it is acceptable the participants must perform some ac-
tion before speaking, larger conferences can be accommo-
dated. When a participant requests to speak, and perhaps
after a moderator exercising floor control has given permis-
sion, an application server promotes the participant to talk-
listen status. Without cascading the maximum conference
size is 1800. With cascading, each tributary mixer may have
1800 − 1 = 1799 participants. Still there can only be at
most 16 tributary mixers, as certain participants on any of
the tributary mixers must be able to talk. This gives a
maximum conference size of 28784 participants, utilizing 17
MPC-4 cards.

There are however a number of drawbacks to cascading
conferences:

Increased latency between speaking parties In order
to achieve acceptable VoIP audio quality, the one-way
latency should ideally be kept below 150ms [9]. If the
latency is too high, two users in a conversation will
begin to talk over each other. In a cascading arrange-
ment, if two participants in a dialogue are on two dif-
ferent tributary mixers, then the audio packets must
travel through three audio mixers to reach the listener.
Depending on the network conditions, jitter buffer con-
figuration, codecs in use, and processing delay in the
mixing media server, the one-way audio latency may
exceed the recommended limits. This may be miti-
gated to some extent by (1) locate the tributary mixers
and main mixer in a high-speed local area network (2)
select codec and packetization size to minimize jitter
and processing delay for the legs between the tributary
mixers and the main mixer.

Inconsistent mix Within each tributary mixer, the main
mixer competes with the participants for N-loudest se-
lection. If the main mixer is drowned out, the partici-
pants on this tributary mixer will hear a different mix
from participants on other tributary mixers. This may
be mitigated if the media server supports a preferred
port that is always included in the mix.

If the main mixer is not including all tributary mixers
in the output, then it is also possible that a participant

hear another participant on the same tributary mixer,
but participants on other tributary mixers do not.

Unfair active speakers selection Within each tributary
mixer, the participants compete for N-loudest selec-
tion. A participant may not be selected in the mix
because there are N louder participants on the same
tributary mixer, but another participant on a quieter
tributary mixer may be selected although he is not as
loud.

Increased noise level Typically N is set to 3 or 4 to allow
some simultaneous talking on each tributary mixer.
When multiplied by the number of tributary mixers
there are many audio streams added to the mix, lead-
ing to high background noise level.

Inaccurate reporting of active speakers Media servers
typically report the list of active speakers in the N-
loudest selection sorted by loudness. With multiple
tributary mixers reporting active speakers, it is not
possible to obtain a sorted list unless the signal level
is also reported.

As discussed above, there are ways to mitigate some of the
issues caused by cascading conferences. However, they add
complexity to both the media servers and the application.
Most of the features required are not provided by today’s
media servers.

3. PROPOSED SOLUTION

3.1 Motivations

From the discussion in the last section, it becomes ap-
parent that the shortcomings of cascading conferences stem
from the fact that speakers are scattered across multiple
mixers. If all talk-listen participants are connected to the
same mixer, the audio quality and other properties would be
identical to a regular conference that can be accommodated
on a single mixer.

In analyzing the characteristic of very large conference ap-
plications, the authors have observed that compared to reg-
ular conference where all participants take turn speaking,
the majority of participants in very large conferences only
listen and do not speak at all. Moreover, large conferences
are usually more structured with a hand-raising protocol to
request to speak and a moderator who performs floor con-
trol and grants permission to speak. These suggest that the
media server does not need to constantly monitor the sig-
nal levels of all the participants for the N-loudest selection.
Furthermore, the same mix is distributed to a large number
of participants requiring minimal processing.

Another observation is that, unlike in legacy circuit-switched
TDM systems, in VoIP the media is transmitted as IP pack-
ets. Session Initiation Protocol (SIP) [14] is the dominant
VoIP signaling protocol. SIP provides a lot of flexibility
in modifying the topology of connections between the end-
point devices and the mixing media servers, which can be
controlled by application servers programmable by standard
APIs. However, in the literature where cascading confer-
ences are discussed, a participant is connected to a tributary
mixer for the lifetime of the participation. If this flexibility
is exploited, more efficient design becomes possible.
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3.2 Architecture

With the above observations, we propose a novel design
for very large conferences. Figure 2 shows the media archi-
tecture of our design.

All talk-listen participants are connected to a standard
mixing media server, in the same manner as in a regular size
conference. However, listen-only participants are connected
to a new component called the RTP replicator, or replicator
for short. The replicator is connected to the mixer as a
listen-only participant. The mixer sends the conference mix
to the replicator. Each time when the replicator receives
a RTP packet, it distributes the packet to the listen-only
participants it is serving. The same packet content is sent
to all the different destinations. In the other direction, the
replicator does not send media to the mixer, and the mixer
does not need to monitor the port to the replicator. There
may be multiple replicators involved in a single very large
conference.

With this approach, the number of talk-listen participants
is limited by the mixing media server, for example in the
Radisys CMS-9000 the limit is 125. However, because the
replicators do not send audio to the main mixer, there can
be up to 1800 − 125 = 1675 replicators. If the replicators
can support in the order of 1000 listen-only participants, the
capacity of this design should satisfy all practical applica-
tions.

Of course, there is a tradeoff. Participants must perform
some action to request to speak. This may be granted auto-
matically, or a moderator exercising floor control may grant
the permission at a suitable time. In the system that will
be discussed in Section 4.2, the participants and moderator
use a Web interface to control these plus other call control
features.

When a participant is promoted from listen-only to talk-
listen role or demoted from talk-listen to listen-only, the
media connection switches from the replicator to the main
mixer or vice versa. This is achieved by SIP signaling. The
mixing media server and the replicators are SIP user agents.
The participants’ endpoints are also SIP user agents, for ex-
ample SIP softphones running on desktop computers, hard-
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Figure 4: Third party call control signaling flow to
switch a participant from replicator to mixer

ware SIP phones, or PSTN gateways. Therefore, an SIP
application server can act as a third-party call controller
to modify how the media streams are connected. In Fig-
ure 3, the SIP application we call Large Conference Con-
troller (LCC) is inserted in the signaling path between the
participant endpoint and the mixing media server or replica-
tor. Note that we have shown one separate instance of LCC
for each participant, as it operates independent of the other
instances. Note also that there is a SIP dialog between the
replicator and mixing media server to establish the one-way
media session from the mixer to the replicator. Consider
participant B who is being promoted to talk-listen, LCC
uses the call flow shown in Figure 4 to change the media
connectivity to the mixer.

4. IMPLEMENTATION AND EVALUATION

4.1 RTP Replication

Compared to the tasks of a mixing media server, the op-
eration of the RTP replicator is much simpler. It only has
to distribute packets to multiple destinations immediately
upon receipt. Therefore we investigated the feasibility of
implementing it in software on general-purpose computers.

The first consideration is whether general-purpose, com-
modity computer servers have sufficient networking band-
width to handle sending a large number of media streams.
At present gigabit Ethernet is most common in computer
servers, while some high-end servers also support 10-gigabit
Ethernet. In our production environment most servers use
full-duplex gigabit Ethernet, i.e. 109 bits per second in each
direction.
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Number of CPU% Jitter
Destinations java.net java.nio (ms)

2000 38 43 1.28
4000 77 76 0.02
6000 93 100 (fail) 0.02
7000 112 (fail) – –

Table 1: Performance of RTP Replicator Implemen-
tation

Assuming G.711 codec at 20ms packetization, there are
50 packets of 160 bytes of audio data per second, giving 64
kbps. However, when RTP header and lower layer headers
are added the data bandwidth is close to 86 kbps. Thus in
theory a gigabit Ethernet interface can support distributing
media to about 11,600 destinations. This is considerably
more than most high-density specialized media servers.

Next we consider the number of UDP ports required. It
is desirable to receive RTP packets from the mixer on a
dedicated port, so that the replicator does not need to check
the source of each packet. It is however possible to send
packets to all destinations from the same port. Therefore
two ports are required for RTP traffic, and another two if
RTCP is supported (our current implementation does not
generate RTCP reports).

The RTP replicators are SIP user agents, and our de-
velopment and deployment environment is the SIP Servlet
API [2]. SIP Servlet is currently the dominant standard
for SIP application development, and provides a Java API
for programming SIP user agents, back-to-back user agents
and proxies to be executed on a container. Therefore, we
implemented the RTP replication in the Java programming
language. An execution thread is dedicated to each replica-
tion. The pseudocode below describes its operation:

Blocks to receive packet on UDP datagram socket.
Update set of destinations if there has been

addition or deletion.
Send packet to all destinations.
Repeat.

Java provides two options for sending and receiving data-
gram packets: DatagramSocket and related classes in the
java.net package, or DatagramChannel and related classes
in the java.nio package. The latter stands for ‘new I/O’
and was introduced in the 1.4 version of Java Standard
Edition. We conducted performance benchmark on a stan-
dard Red Hat Enterprise Linux Server (release 5.3) with one
quad-core Intel Xeon CPU at 2.5GHz and 16GB RAM. A
gigabit Ethernet interface was used for both receiving and
sending RTP packets. CPU utilization is measured averaged
over 20 second periods with top. Note that because of the
quad-core processor 400% corresponds to the peak utiliza-
tion. We also measured peak interarrival jitter as defined in
[16] when using java.net package by running the Wireshark
packet analyzer on one of the destination. The results are
shown in Table 1.

It is perhaps not surprising that the older java.net pack-
age provides slightly better performance, supporting up to
6000 destinations. The java.nio package provides advanced
features such as non-blocking poll and select on multiple
sockets, but at some performance cost. The simple opera-
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Figure 5: Architecture of Standard Conferencing

tion performed by the replicator does not make use of these
advanced features.

The interarrival jitter is low in all cases, and the higher
value with 2000 destinations is not significant as it occurred
only for one packet that arrived late during a test run. Over-
all the packets arrive on the 20ms schedule closely even at
6000 destinations. It should also be noted that in any case
for the listen-only participants a higher one-way latency due
to larger jitter buffer size is acceptable because there is no
possibility of over-talk.

The performance testing results show that an inexpen-
sive general-purpose computer can support distribution to a
large number of listen-only participants without significant
degradation to the audio quality.

4.2 SIP Servlet Application Design

The authors are part of a team who had previously de-
signed and developed an advanced teleconferencing service
described in [5]. This is a production-grade deployment
that serves our company’s standard teleconferencing (but
not very large conferencing) needs, and currently handles
tens of thousands of simultaneous calls and millions of usage
minutes on a typical workday. Users of the service can either
use a Web interface or touch-tone key presses to control var-
ious features. In [5], we discussed the design consideration
that led to a modular and compositional design consisting
of two SIP Servlet applications:

User manager (UM) Handles interaction with a user, be-
ginning with connecting the user to an interactive voice
response (IVR) media server to collect credential and
conference access code to identify the conference to
join. Subsequently, the user may participate in mul-
tiple conferences and UM is responsible for switching
the user between conferences.

Conference Manager (CM) Handles all participants on
one conference and interacts with the mixing media
server, for example to mute and unmute a participant,
play prompts, and manage recordings.

Figure 5 shows how these two applications are composed
in an application chain, and their relationship to other com-
ponents of the system.

After completing the design for very large conferencing,
we are now in the process of adding the capability to our
service deployment. The same platform would support stan-
dard and very large conferences. Besides reduced capital
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and operational expenses, users can also benefit from a con-
sistent user interface and integrated experience, for example
the ability to switch between a regular conference and a very
large conference.

This represents a good opportunity to evaluate how our
modular design and application composition techniques can
support incremental feature enhancement. Ideally, the ex-
isting software would require no or minimal changes.

To support very large conferencing, we developed two new
SIP servlet applications:

Large Conference Controller (LCC) Manages one par-
ticipant on one very large conference, switching the
participant between the mixer and the replicator as
the participant changes role.

RTP Replicator (RTPR) Performs the media replication
to all listen-only participants on a very large confer-
ence. When the first listen-only participant connects
to RTPR, it first connects to the mixer to start receiv-
ing the conference mix. It then adds this first and any
subsequent participants to the set of destinations.

In the SIP Servlet environment, application selection is
performed by an Application Router (AR). Specifically, we
use the Distributed Feature Composition (DFC) AR[4] which
performs application selection based on caller and callee ad-
dresses and subscription to applications. In this case, when
a user calls in, UM is selected first. After the IVR identifies
the conference the user is joining, and if the conference is
a regular conference and not a very large conference, UM
sends INVITE request and DFC-AR selects CM as the next
application, resulting in the original application chain shown
in Figure 5.

However, if the conference is a very large conference, the
DFC-AR selects LCC next instead. When LCC in turn
sends INVITE request, if the initial role of the participant
is listen-only, RTPR is selected next. If the initial role of
the participant is talk-listen, CM is selected next to connect
the user to the main mixer.

LCC receives command from the Web server when a par-
ticipant changes role, and tears down the SIP dialog with
RTPR and switches to CM and vice versa using the call
flow shown in Figure 4.

In Figure 6, three participants on the large conference are
shown. Caller 1 is talk-listen, and caller 2 and 3 are listen-
only. Two ports on the mixing media server are used, one
for Caller 1 and one for the replicator.

It should be noted that UM and CM are not affected by
this new feature. The changes are confined to (1) the sub-
scription configuration of the DFC-AR, and (2) the Web ap-
plication where user interface and business logic are modified
to handle the hand-raising and floor control functionalities,
and the interaction with LCC.

Our production system consists of a number of servers
hosting SIP Servlet containers and the UM, CM, LCC and
RTPR applications. A SIP load balancer is responsible for
distributing incoming calls evenly to the servers. In order
to balance the load of the replicators, LCC may simply in-
voke a RTPR executing in the same server. The listen-only
participants in a very large conference would then be dis-
tributed close to evenly across RTPRs executing on all the
servers.

4.3 Touchtone Control

While a participant can use the Web interface to request to
speak, it is necessary to also provide a telephone-only means
as not all participants access the Web site. In our current
regular conferencing service, participants already have the
ability to use touchtone key presses to mute or unmute their
lines. We need to provide the same capability for partici-
pants to request to speak.

However, this presents a problem. In the current system,
the key presses are detected as dual-tone multi-frequency
(DTMF) audio by the mixing media server, which then re-
ports the detected tones to CM in the SIP signaling path.
However, in a large conference the listen-only participants
are not connected to the media server but to the replicator.

One option is to rely on Key Press Markup Language
(KPML) events with which a participant’s endpoint device
reports key presses in the signaling path [3]. However, KPML
is not widely supported. Another option is to enhance the
replicator to also receive media packets from the listen-only
participants, and detect touchtone key presses. Fortunately
most user agent implementations support transmitting key
presses as special RTP payload packets [17]. Therefore it is
not necessary to analyze the audio packets to detect DTMF
tones.

To further reduce the computational load required for the
task of detecting key presses, when the participant endpoint
and the replicator negotiate media streams and codecs using
the offer-answer procedure, the replicator can indicate that
it wishes to send audio only and receive key press event
only. We have implemented touchtone detection in the RTP
replicator. The computation load is much smaller than that
imposed by audio packet replication.

4.4 Switching Delay

When a participant is switched from listen-only to talk-
listen, signaling is required to establish a new call to CM and
the mixing media server. Similarly, when a participant is
switched from talk-listen to listen-only, signaling is required
to establish a new call to RTPR. If the time taken to perform
the switching operations is too long, the participant will hear
break in the audio from the conference.

In order to evaluate the switching delay, we designed an
experiment with one talk-listen participant and two listen-
only participants on a conference. The talk-listen partici-
pant constantly sent audio to the mixer. One of the other
participants was switched from listen-only to talk-listen and
back while received RTP packets were captured. The switch-
ing delay was measured as the time gap between the last
packet from the RTPR to the first packet from the mixing
media server for the listen-only to talk-listen switch, and
vice versa.

Averaged over three test, the listen-only to talk-listen
switching delay was 35ms, and the talk-listen to listen-only
switching delay was 24ms. The small delay indicated that
the participant should not hear noticeable break or artifact,
and this was confirmed by listen tests.

5. RELATED WORK

Extensive work on conferencing has been conducted in the
Internet Engineering Task Force (IETF). Our proposed so-
lution fits into the models of ‘tightly coupled conference’ [13]
and ‘centralized conference’ [1]. A number of conferencing
scenarios are presented in [7], and among them ‘lecture mode
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conferences’ and ‘presentation and Q & A sessions’ can be
supported readily by the proposal in this paper. However,
the IETF has not proposed a solution that switches partic-
ipants between a mixer and a replicator or multicast.

As noted in Section 2, cascading conferences have been
proposed to support conferences with very large number of
participants in [10, 18, 11]. In these work, the assignment
of participants to mixers are static, and does not take into
account the status of the participants.

A scalable group communication system is proposed in
[19]. A tree-based control topology is used to improve scala-
bility and responsiveness, with reconfiguration mechanisms
aimed to optimize performance. However, this work is pri-
marily concerned with control and signaling. The transmis-
sion and mixing of audio and video data rely on existing
transport facilities, and no new mechanisms are proposed.

IP multicast can also be used to support large scale audio
and video conferencing [6, 8]. Each participant broadcasts
his media packets that are then received by all other partici-
pants. Alternatively application-layer multicast can be used
to remove the requirement of network-layer multicast [15].
However, in these loosely coupled conferences it is difficult
to exert floor control. Nonetheless, we intend to investigate
a hybrid system that uses multicast to distribute media to
the listen-only participants.

6. SUMMARY AND FUTURE WORK

In this paper, we have described a novel design for very
large teleconferencing systems. We have completed an im-
plementation using the SIP Servlet Java API, and showed
that high capacity can be achieved on general-purpose com-
puters. We have also showed how this new capability can
be integrated into our existing teleconference system because
of modularity and application composition techniques. At
the present time, this very large teleconferencing system is
ready to begin user trial and will go into production soon

afterwards.
There are several areas of future work that we intend to

pursue. First, our current service only uses the G.711 codec.
In order to support multiple codecs, a RTP replicator can be
assigned to each codec. The replicator would then connect
to the mixing media server using the relevant codec. The
task of selecting the correct replicator can reside with the
Large Conference Controller, which can inspect the SDP in
the media offer received from the participant endpoint to
make the determination.

For scenarios where participants are divided into several
geographically distant sites, the cascading conferences ar-
rangement can offer a way to reduce the traffic on the dis-
tant links by having participants connect to their local trib-
utary conference. Similarly, in this proposal a number of
RTP replicators may be distributed geographically to close
to groups of participants. The talk-listen participants would
still need to connect directly to the mixing media server in
a single location. However, one possible optimization is to
again exploit the flexibility of VoIP signaling and media con-
trol to dynamically move to a media server that is close to
the majority of the current talk-listen participants.

Currently we use a form of multi-unicast for the distri-
bution of RTP packets to the listen-only participants. We
intend to investigate using multicast techniques for the very
large teleconference application, taking into consideration
SIP endpoint support, multicast through wide area networks,
latency, and security issues.
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ABSTRACT
This paper presents the design and implementation of CCMP,
a conference management protocol currently under stan-
dardization within the IETF, conceived at the outset as a
lightweight protocol allowing conferencing clients to access
and manipulate objects describing a centralized conference.
The CCMP is a state-less, XML-based, client-server pro-
tocol carrying in its request and response messages con-
ference information in the form of XML documents and
fragments conforming to the centralized conferencing data
model schema. It represents a powerful means to control
basic and advanced conference features such as conference
state and capabilities, participants and relative roles and de-
tails. We first focus on the design of the protocol and then
discuss how it has been integrated in the Meetecho collab-
orative framework developed at the University of Napoli as
an active playground for IETF standardization activities in
the field of real-time applications and infrastructure.

Keywords
Conferencing, Conference Control and Manipulation, Pro-
tocol Design, Protocol Integration

1. INTRODUCTION
In the latest years, the IETF (Internet Engineering Task

Force) has devoted many efforts to the definition of standard
conferencing solutions. Among such solutions, the Frame-
work for Centralized Conferencing [2] (XCON Framework)
defines a signaling-agnostic architecture, naming conventions
and logical entities required for building advanced conferenc-
ing systems. The XCON Framework introduces the confer-
ence object as a logical representation of a conference in-
stance, representing the current state and capabilities of
a conference. The Centralized Conferencing Manipulation
Protocol (CCMP) illustrated in this paper is the latest out-
put to be produced by the XCON working group. It is
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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currently undergoing review from the international research
community and it is heading towards completion and pub-
lication as an RFC (Request For Comments) standard doc-
ument.

CCMP allows authenticated and authorized users to cre-
ate, manipulate and delete conference objects. Operations
on conferences include adding and removing participants,
changing their roles, as well as adding and removing media
streams and associated end points. CCMP is based on a
client-server paradigm and is specifically suited to serve as a
conference manipulation protocol within the XCON frame-
work, with the Conference Control Client and Conference
Control Server acting as client and server, respectively. The
CCMP uses HTTP as the protocol to transfer requests and
responses, which contain the domain-specific XML-encoded
data objects defined in [7].

This paper is structured in 8 sections. We first briefly
introduce, in section 2, the general architecture for central-
ized conferencing defined by the XCON working group in
the IETF. We then present, in section 3, a bird’s eye view of
the Centralized Conferencing Manipulation Protocol. The
same section also provides some insights on the history of
the overall specification process. Section 4 drills down on
the specific messages that can be carried inside the body of
the CCMP protocol, while section 5 concludes the part asso-
ciated with our standardization work by depicting a typical
call flow related to a CCMP-based interaction between a
conferencing client and an XCON Conferencing server. The
second part of the paper is entirely devoted to the imple-
mentation of the CCMP specification. Such part is based on
the work ongoing at the University of Napoli “Federico II”,
which is since long involved in the IETF activities falling in
the area of real-time applications and infrastructures. The
University of Napoli has contributed to the activities in the
XCON working group, by also providing timely prototype
implementations of most of the protocols therein involved
and/or specified. As far as the CCMP protocol is concerned,
we have worked both on the specification of the protocol
and on its implementation, during the various phases of its
long-lived design history. Information about this activity
is hence provided in section 6. Section 7 reports informa-
tion about the history of the CCMP specification within the
IETF community. Finally, section 8 provides some conclud-
ing remarks, as well as information about our future work
related to the protocol.
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Figure 1: The XCON framework: protocols

2. XCON CONFERENCE CONTROL SYS-
TEM ARCHITECTURE

RFC5239 defines an architecture for centralized conferenc-
ing, and the associated protocol interactons. Such relations
are depicted in Fig. 1.

As it can be seen in the figure, several protocols are in-
volved in an XCON-compliant framework architecture. While
all the protocols implicitly interact with conference objects
somehow, the generically called Conference Control Proto-
col is probably the most important of them in that regard,
as it directly manipulates the conference objects themselves.

Fig. 2 illustrates the typical life cycle of a conference ob-
ject in the XCON framework. At each instant in time, a
conference object is associated with an XML representation
compliant with the XCON data model specification. With-
out digging into the details of the data model, we never-
theless recall that it basically describes all of the features
of a conference, starting from its general description (pur-
pose, hosting entity, status, etc.) and arriving at much more
detailed information like participants and available media,
as well as potential sidebars associated with it (i.e. sub-
conferences involving part of the users participating in the
main conference).

Creation of such an object is usually performed through a
cloning operation, i.e. by replicating the structure of one of
the blueprints (also known as conference object templates)
available at the server.

A newly created conference object is typically marked as
“registered”until the first user joins the conference and it will
stay “active” until either the last user leaves the conference
(in which case it comes back to the “registered” state) or a
user (holding the right to do so) deletes it.

CCMP is the protocol used to manipulate conference ob-
jects during the above described lifetime. The next section
will present a protocol overview in more detail.

3. PROTOCOL OVERVIEW
CCMP is a client-server, XML-based protocol, which has

been specifically conceived to provide users with the neces-
sary means for the creation, retrieval, modification and dele-

tion of conference objects. CCMP is also state-less, which
means implementations can safely handle transactions inde-
pendently from each other. Conference-related information
is encapsulated into CCMP messages in the form of XML
documents or XML document fragments compliant with the
XCON data model representation.

The core set of objects manipulated in the CCMP proto-
col includes conference blueprints, conference objects, users,
and sidebars. CCMP is completely independent from un-
derlying protocols, which means that there can be different
ways to carry CCMP messages across the network, from a
conferencing client to a conferencing server. Indeed, there
have been a number of different proposals as to the most
suitable transport solution for the CCMP. It was soon rec-
ognized that operations on conference objects can be imple-
mented in many different ways, including remote procedure
calls based on SOAP [6] and by defining resources following
a RESTful [5] architecture. In both approaches, servers will
have to recreate their internal state representation of the
object with each update request, checking parameters and
triggering function invocations. In the SOAP approach, it
would be possible to describe a separate operation for each
atomic element, but that would greatly increase the com-
plexity of the protocol. A coarser-grained approach to the
CCMP does require that the server process XML elements in
updates that have not changed and that there can be multi-
ple changes in one update. For CCMP, the resource (REST)
model might appear more attractive, since the conference
operations nicely fit the so-called CRUD (Create-Retrieve-
Update-Delete) approach. Neither of these approaches was
finally selected. SOAP was not considered to be general
purpose enough for use in a broad range of operational envi-
ronments. Similarly, it was deemed quite awkward to apply
a RESTful approach since CCMP requires a more complex
request/response protocol in order to maintain the data both
in the server and at the client. This doesn’t map very ele-
gantly to the basic request/response model, whereby a re-
sponse typically indicates whether the request was successful
or not, rather than providing additional data to maintain the
synchronization between the client and server views. Apart
from this, the RESTful approach was considered too restric-
tive, since it strictly couples the application-level protocol
to HTTP messages and semantics. Even though the cur-
rent implementation of the CCMP relies on HTTP as the
preferred transport means, its specification has been kept
completely independent of such a choice. Just as an exam-
ple, work is in full swing at our laboratory related to both
an XMPP-based and a UDP-based implementation of the
protocol.

The solution for the CCMP at which we arrived can be
viewed as a good compromise amongst the above mentioned
candidates and is referred to as “HTTP single-verb trans-
port plus CCMP body”. With this approach, CCMP is
able to take advantage of existing HTTP functionality. As
with SOAP, it uses a “single HTTP verb” for transport (i.e.
a single transaction type for each request/response pair);
this allows decoupling CCMP messages from HTTP mes-
sages. Similarly, as with any RESTful approach, CCMP
messages are inserted directly in the body of HTTP mes-
sages, thus avoiding any unnecessary processing and commu-
nication burden associated with further intermediaries. This
said, we nonetheless remark once again that with this ap-
proach no modification to the CCMP messages/operations is
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Figure 2: Conference Object Life Cycle

required to use a different transport protocol. The remain-
der of this paper focuses on the selected approach. We will
show how the CCMP protocol inserts XML-based CCMP
requests into the body of HTTP POST operations and re-
trieves responses from the body of HTTP “200 OK” mes-
sages. CCMP messages will have a MIME-type of “applica-
tion/ccmp+xml”, which appears inside both the “Content-
Type” and “Accept” fields of HTTP requests and responses.

3.1 Protocol Operations
The main operations provided by CCMP belong in four

general categories:

• create: for the creation of a conference, a conference
user, a sidebar, or a blueprint;

• retrieve: to get information about the current state
of either a conference object (be it an actual confer-
ence or a blueprint, or a sidebar) or a conference user.
A retrieve operation can also be used to obtain the
XCON-URIs of the current conferences (active or reg-
istered) handled by the conferencing server and/or the
available blueprints;

• update: to modify the current features of a specified
conference or conference user;

• delete: to remove from the system a conference object
or a conference user.

Thus, the main targets of CCMP operations are: (i) con-
ference objects associated with either active or registered
conferences; (ii) conference objects associated with blueprints;
(iii) conference objects associated with sidebars, both em-
bedded in the main conference (i.e. <entry> elements in
<sidebars-by-value>) and external to it (i.e. whose XCON-
URIs are included in the <entry> elements of <sidebars-
by-ref>); (iv) <user> elements associated with conference
users; (v) the list of XCON-URIs related to conferences and
blueprints available at the server, for which only retrieval
operations are allowed.

Each operation in the protocol model is atomic and either
succeeds or fails as a whole. The conference server must
ensure that the operations are atomic in that the operation
invoked by a specific conference client completes prior to an-
other client’s operation on the same conference object. The

details for this data locking functionality are out of scope for
the CCMP protocol specification and are implementation
specific for a conference server. Thus, the conference server
first checks all the parameters, before making any changes
to the internal representation of the conference object.

Also, since multiple clients can modify the same confer-
ence objects, conference clients should first obtain the cur-
rent object from the conference server and then update the
relevant data elements in the conference object prior to in-
voking a specific operation on the conference server. In or-
der to effectively manage modifications to conference data,
a versioning approach is exploited in the CCMP. More pre-
cisely, each conference object is associated with a version
number indicating the most up to date view of the confer-
ence at the server’s side. Such version number is reported to
the clients when answering their requests. A client willing
to make modifications to a conference object has to send
an update message to the server. In case the modifica-
tions are all successfully applied, the server sends back to
the client a “success” response which also carries informa-
tion about the current server-side version of the modified
object. With such approach, a client which is working on
version “X” of a conference object and finds inside a “suc-
cess” response a version number which is “X+1” can be sure
that the version it was aware of was the most up to date.
On the other hand, if the “success” response carries back a
version which is at least “X+2”, the client can detect that
the object that has been modified at the server’s side was
more up to date than the one it was working upon. This is
clearly due to the effect of concurrent modification requests
issued by independent clients. Hence, for the sake of hav-
ing available the latest version of the modified object, the
client can send to the conference server a further “retrieve”
request. In no case a copy of the conference object avail-
able at the server is returned to the client as part of the
update response message. Such a copy can always be ob-
tained through an ad-hoc “retrieve” message. Based on the
above considerations, all CCMP response messages carry-
ing in their body a conference document (or a fragment of
it) must contain a “version” parameter. This does not hold
for request messages, for which the “version” parameter is
not at all required, since it represents useless information
for the server: as long as the required modifications can be
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Figure 3: CCMP Request and Response messages

applied to the target conference object with no conflicts, the
server does not care whether or not the client had an up to
date view of the information stored at its side. This said, it
stands clear that a client which has subscribed at the server,
through the XCON event package [4], to notifications about
conference object modifications, will always have the most
up to date version of that object available at his side.

A final consideration concerns the relation between the
CCMP and the main entities it manages, i.e. conference
objects. Such objects have to be compliant with the XCON
data-model, which identifies some elements and attributes as
mandatory. From the CCMP standpoint this can become a
problem in cases of client-initiated operations, like either the
creation or the update of conference objects. In such cases,
not all of the mandatory data can be known in advance to
the client issuing a CCMP request. As an example, a client
has no means to know, at the time it issues a conference cre-
ation request, the XCON-URI that the server will assign to
the yet-to-be-created conference and hence it is not able to
appropriately fill with that value the mandatory ‘entity’ at-
tribute of the conference document contained in the request.
To solve this kind of issues, the CCMP will fill all mandatory
data model fields, for which no value is available at the client
at the time the request is constructed, with fake values in
the form of wildcard strings (e.g. AUTO GENERATE X,
with X being an incremental index initialized to a value of
1). Upon reception of the mentioned kinds of requests, the
server will: (i) generate the proper identifier(s); (ii) produce
a response in which the received fake identifier(s) carried
in the request has (have) been replaced by the newly cre-
ated one(s). With this approach we maintain compatibility
with the data model requirements, at the same time allow-
ing for client-initiated manipulation of conference objects at
the server’s side (which is, by the way, one of the main goals
for which the CCMP protocol has been conceived at the
outset).

4. CCMP MESSAGES
As anticipated, CCMP is a request/response protocol. Be-

sides, it is completely stateless, which explains why HTTP
has been chosen as the perfect transport candidate for it.

For what concerns the protocol by itself, both requests
and responses are formatted basically in the same way, as
depicted in Fig. 3. In fact, they both have a series of head-
ing parameters, followed by a specialized message indicating
the particular request/response (e.g., a request for a specific
blueprint). This makes it quite easy to handle a transaction

in the proper way and map requests and related responses
accordingly.

For what concerns the shared parameters:

• confUserID indicates the participant making the re-
quest;

• confObjID indicates the conference the request is as-
sociated with;

• operation specifies what has to be done, according to
the specialized message that follows.

Other parameters are defined which are more strictly re-
lated to either requests or responses. There is, for instance,
a ‘password’ parameter participants may need to provide
in CCMP requests for password-protected conferences, as
well as a ‘response-code’ parameter (which is carried just
by responses) providing information about the result of a
requested operation.

That said, the core of a CCMP message is actually the
specialized part. In fact, as stated in the previous section,
the CCMP specification describes several different opera-
tions that can be made on a conference object, namely: (i)
blueprints retrieval, (ii) conference creation and manipula-
tion, (iii) users management, (iv) sidebar-related operations.
All these operations have one or more specialized message
formats, instead of a generalized syntax, in order to best suit
the specific needs each operation may have.

Indeed, requesting a blueprint and adding a new user to
a conference have very different requirements for what con-
cerns the associated semantics level, and as such they need
different modes of operation. This is reflected in what is car-
ried in the specialized message body, which will always con-
tain information (compliant with the XCON common data
model specification) strictly related to the operation it is as-
sociated with. The specialization of the message then allows
for an easier and faster management at the implementation
level.

To better highlight the considerations above, we show in
Fig. 4 the structure of a CCMP confRequest message, which
is used in all operations concerning the manipulation and
control of an entire conference object. As described in the
picture, each such message is a specialization of the general
CCMP request message, specifically conceived to transport,
through the confInfo element, an XCON-compliant confer-
ence object (i. e. an object whose representation conforms to
the common data model specification) towards the CCMP
server.

5. CCMP SAMPLE CALL FLOW
To better clarify how a CCMP transaction can occur, this

section presents a sample call flow. This example comes from
a real implementation deployment, as it will be explained in
section 6.

For the sake of conciseness, we chose a very simple ex-
ample, which nevertheless provides the reader with a gen-
eral overview of both CCMP requests and responses. As
mentioned previously, HTTP is suggested by the CCMP
specification as a transport for the protocol messages, and
Fig. 5 shows the typical request/response paradigm involved
in that case.

As it can be seen, the CCMP request (in this case, a
’blueprintRequest’) is sent by an interested participant to
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Figure 4: CCMP confRequest message

Figure 5: CCMP transported in HTTP

the conference server. This request is carried as payload of
an HTTP POST message:

POST /Xcon/Ccmp HTTP/1.1
Content-Length: 657
Content-Type: application/ccmp+xml
Host: example.com:8080
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.0.1 (java 1.5)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ccmp:ccmpRequest

xmlns:info="urn:ietf:params:xml:ns:conference-info"
xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">

<ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ccmp:ccmp-blueprint-request-message-type">

<confUserID>xcon-userid:Alice@meetecho.com</confUserID>
<confObjID>xcon:MeetechoRoom@meetecho.com</confObjID>
<operation>retrieve</operation>
<ccmp:blueprintRequest/>

</ccmpRequest>
</ccmp:ccmpRequest>

The Content-Type header instructs the receiver that the
content of the message is a CCMP message (application/
ccmp+xml). For what concerns the request itself, as men-
tioned, it is a ‘blueprintRequest’: this means that the partic-
ipant is interested in the details of a specific blueprint avail-
able at the server. This is reflected by the specialized part
of the message, i.e., the <ccmp:blueprintRequest> element.
The generic parameters introduced in the previous section
are also provided as part of the request: ‘confUserID’ refers
to the requestor (Alice’s XCON URI), ‘confObjID’ in this
case relates to the blueprint to be retrieved (as an XCON
conference URI), while ‘operation’ clarifies what needs to be
done according to the request (retrieve the blueprint).

The CCMP response, in turn, is carried as payload of an
HTTP 200 OK reply to the previous POST:

HTTP/1.1 200 OK

X-Powered-By: Servlet/2.5
Server: Sun GlassFish Communications Server 1.5
Content-Type: application/ccmp+xml;charset=ISO-8859-1
Content-Length: 1652
Date: Thu, 04 Feb 2010 14:47:56 GMT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ccmp:ccmpResponse

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
xmlns:info="urn:ietf:params:xml:ns:conference-info"
xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">

<ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ccmp:ccmp-blueprint-response-message-type">

<confUserID>xcon-userid:Alice@meetecho.com</confUserID>
<confObjID>xcon:MeetechoRoom@meetecho.com</confObjID>
<operation>retrieve</operation>
<response-code>200</response-code>
<response-string>Success</response-string>
<ccmp:blueprintResponse>

<blueprintInfo entity="xcon:MeetechoRoom@meetecho.com">
<info:conference-description>

<info:display-text>MeetechoRoom</info:display-text>
<info:available-media>

<info:entry label="audioLabel">
<info:type>audio</info:type>

</info:entry>
<info:entry label="videoLabel">

<info:type>video</info:type>
</info:entry>
<info:entry label="jSummitLabel">

<info:type>whiteboard</info:type>
</info:entry>
</info:available-media>

</info:conference-description>
<info:users>

<xcon:join-handling>
allow

</xcon:join-handling>
</info:users>
<xcon:floor-information>

<xcon:floor-request-handling>
confirm

</xcon:floor-request-handling>
<xcon:conference-floor-policy>

<xcon:floor id="audioFloor">
<xcon:media-label>

audioLabel
</xcon:mediaLabel>

</xcon:floor>
<xcon:floor id="videoFloor">
<xcon:media-label>

videoLabel
</xcon:mediaLabel>

</xcon:floor>
<xcon:floor id="jSummitFloor">
<xcon:media-label>

jSummitLabel
</xcon:mediaLabel>

</xcon:floor>
</xcon:conference-floor-policy>

</xcon:floor-information>
</blueprintInfo>

</ccmp:blueprintResponse>
</ccmpResponse>

</ccmp:ccmpResponse>

As a reply to a ‘blueprintRequest’ message, the CCMP re-
sponse includes a ‘blueprintResponse’ specialized message in
its body: this element includes the whole conference object
(compliant with the XCON common data model specifica-
tion) associated with the requested blueprint, as part of a
<blueprintInfo> container. Besides containing some of the
parameters provided in the request (confUserID, confObjID,
operation), the response also carries back an additional piece
of information related to the result of the request, namely,
a ‘response-code’ parameter telling the participant that the
request was successfully taken care of (‘200’), which is also
reflected in the related ‘response-string’ (‘Success’).

The next section will provide further details on our im-
plementation experience with the protocol. Specifically, we
will address the way we designed the process according to
the specification (both from the client and the server per-
spective), and the related implementation choices.

6. CCMP WORK AT UNINA
This section deals with our prototype implementation of

the CCMP protocol. The reference scenario is the one de-
picted in Fig. 6.

As the figure shows, in order to have a working instance of
the CCMP protocol which could be used as a playground for
testing and validation of the specification in progress, as a
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Figure 6: Reference scenario @ unina

first step we have realized a stand-alone Java-based CCMP
client and a Java-based CCMP server.

The CCMP testing client presents a very simple graphical
user interface through which it is possible to create and send
to the CCMP Server the desired CCMP request. All CCMP
messages sent and received by the client are logged onto a
debugging window which allows to easily visualize the entire
call flow associated with client-server interactions.

As to the server, it has been integrated into our Meetecho
conferencing platform [1]. Since Meetecho already makes use
of a“proprietary”protocol1 for conference creation, manipu-
lation and scheduling (which is herein called ‘Scheduler’), we
had to implement the CCMP server as a proxy towards it.
The CCMP server receives CCMP requests from the testing
client, converts them into Scheduler requests and forwards
them to the Meetecho server by using the Meetecho Sched-
uler protocol, which is a simple, text-based protocol based on
TCP. When the Meetecho server is done with the forwarded
request, it sends back to the CCMP server a Scheduler-
compliant answer, which is then converted into a CCMP-
compliant response and forwarded to the CCMP testing
client. The CCMP server takes care of the correct map-
ping between CCMP- and Scheduler-compliant messages.
We also remark that synchronization between the Meete-
cho server and the CCMP proxy server can be achieved
through asynchronous notifications. As soon as something
worth communicating happens at the Meetecho server, a no-
tification can be sent to the CCMP proxy (which subscribes
to the events associated with conference management and
manipulation) in order to let it always have an up-to-date
view of the actual situation inside the conferencing server.

Indeed, the notification mechanism described above, al-
lows us to improve the overall performance of the integrated
server made of the CCMP proxy combined with the Meete-
cho server. In fact, provided that the CCMP proxy is al-
ways kept aligned with the Meetecho server for all what con-
cerns conference-related information, we can let it respond
to CCMP client requests directly, thus skipping the complex
operations associated with the needed ‘CCMP-Scheduler’
mapping procedures, along both directions.

Upon activation, the CCMP Server retrieves, through spe-
cific Scheduler requests, all the Meetecho blueprints and
conferences and loads them into a native XML database.

1This is due to the fact that, when the Meetecho XCON-
compliant conferencing platform has been conceived, inside
the XCON Working Group there was no consensus yet as to
the standard conference control protocol to be adopted.

Conference objects hence take the form of XML confer-
ence documents compliant with the XCON data model. As
stated above, the CCMP Server is also a subscriber to the
Meetecho Notification Service, and is thus aware of all mod-
ifications taking place on the conferences managed by the
Meetecho server (modifications which might also be due to
actions undertaken by non-CCMP aware Meetecho confer-
encing clients). Accordingly to the received notifications, the
database is updated. In such a way, the CCMP Server has
always available an aligned image of the conference informa-
tion set managed by the Meetecho platform. This allows the
CCMP Server to immediately answer to CCMP retrieve re-
quests, without forwarding the corresponding Scheduler re-
quest to the Meetecho server each time this kind of message
arrives. Unlike the retrieve case, the CCMP requests associ-
ated with an operation of either create, or update, or delete
must be translated into the equivalent Scheduler messages
to be sent to Meetecho, in order to have an actual effect on
the Meetecho Server side. The Scheduler responses are then
interpreted and converted into the appropriate database up-
dates, as well as translated into the equivalent CCMP re-
sponses to be returned to the CCMP Client.

Having transposed the Meetecho Conference Control plane
to the CCMP world, we have integrated a library of CCMP
APIs into our Meetecho client, thus allowing it to make use
of CCMP (instead of the legacy Meetecho Scheduler proto-
col) as the Conference Control Protocol, in such way com-
pleting the scenario we presented in Fig. 6.

In the following subsections, we delve somehow into the
details of the main actors involved in the Conferencing Con-
trol environment we have introduced, namely the CCMP
client, the CCMP proxy server and the native XML data-
base. We will discuss both the design and the implemen-
tation choices associated with the above mentioned compo-
nents. Some notes and considerations about the way CCMP
has been integrated into the Meetecho client are also re-
ported.

6.1 Managing XML CCMP messages and con-
ference information

The CCMP server and client components have both been
implemented in Java. Since CCMP messages, as well as the
conference-related information they carry, are formatted as
XML documents, we faced the need of generating, parsing
and handling such items in Java. Besides, as it will be ex-
plained in the following section, we also needed a proper way
to handle an XML-aware database, which could manage the
manipulation of conference objects.

In order to facilitate these operations, we chose to exploit
the JAXB API (Java Architecture for XML Binding API)
2.1, which is the last API version at the time of this writ-
ing. This API allows to represent XML documents (that
also have to be validated against a given XML Schema) in a
Java format, i.e. through Java objects representing their dif-
ferent composing parts. The binding indeed represents the
correspondence between XML document elements and the
Java objects created with JAXB. Accessing XML contents
by means of JAXB presents several advantages in terms of
both efficiency and easiness with respect to SAX and DOM
parsing. In fact, just like DOM, the output analysis can be
saved at once and then consulted at any time without having
to re-parse the whole document again, while the concerning
memory occupation turns out to be lower than the one of
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the DOM tree; like SAX, on the other hand, it is possible
to access specific document parts without performing a fur-
ther complete document parsing and without traversing the
XML tree until the leaf to be examined is reached.

JAXB not only allows for easy access to XML documents,
but also for a seamless creation of XML documents from the
representative Java counterparts. This operation is called
‘marshalling’. The inverse operation, from XML to Java
objects, is instead called ‘unmarshalling’.

Each JAXB generated class, corresponding to a specific
type of XML element or attribute described in the schema
file, is equipped with get and set methods that make it very
easy to both extract information values and set them.

The JAXB architecture is composed of a set of APIs (con-
tained in the javax.xml.bind extension package) and of a
binding compiler, called XJC, which generates, starting from
an XML Schema, the set of Java classes representing the ele-
ment types embedded in XML documents compliant with it.
In this context we have used the XJC Eclipse plug-in and
produced the package of Java classes related to the XML
Schema files collected from the data model documents [8,
7], as well as from the most up-to-date CCMP draft [3].

6.2 Managing HTTP
Considering the suggested transport for CCMP messages

is HTTP (precisely, POST and 200 messages for requests
and responses, respectively), we also had to cope with the
issue of handling HTTP messages both at the client and at
the server sides.

For the CCMP server implementation, we made use of
the Apache open-source servlet engine Tomcat. The CCMP
server business logic is realized through a servlet which,
in the doPost() method, extracts the CCMP body from
the HTTP POST request and, once the proper CCMP re-
quest type has been detected, starts the specific management
thread accordingly.

On the client side, instead, we made use of the HTTP
open source package provided by Apache, Apache Commons
HTTP Client 3.1. This package is widely deployed in several
projects, and allowed us to easily create and send to the
CCMP server HTTP POST requests containing the CCMP
message inside their payload, as well as handle the associated
HTTP response accordingly.

6.3 Xindice database
We previously mentioned the need for an XML-aware data-

base. In fact, CCMP handles the manipulation of conference
objects compliant with the XCON common data model spe-
cification. Such conference objects are XML documents, and
so, having an XML-aware database to store and manipulate
them instead of relying on a relational databases relieved us
form the burden of taking care of the transformation from
tables to XML documents and viceversa whenever needed.

To cope with this requirement we chose Xindice, an open
source Apache server handling an XML-native database specif-
ically conceived for storing XML documents. Just as we
needed, it allows to simply insert the XML data as it is
when writing to the database, as well as to return the data
in the same format when accessing the database. This fea-
ture is very useful when having to deal with complex XML
documents like XCON conference objects, which might be-
come very difficult or even impossible to be effectively stored
in structured databases.

Figure 8: CCMP-Scheduler mapping

Xindice is installed as a Tomcat web application, and as
such it was seamlessly integrated into our CCMP server
prototype implementation. The XML:DB Java API is used
to access the XML database. Such API is vendor-neutral,
meaning that they are independent of the specific native
XML database implementation, and operate on XML doc-
ument collections, allowing the user to perform, on the col-
lected XML documents, XPath queries as well as XUpdate
modifications. Document collections are created and ac-
cessed through Xindice-specific Java APIs (Xindice Collec-
tion Manager Service).

In this context, we generated two main collections: (i)
confs – the set of active and registered conferences hosted
on the Meetecho server, reported in the form of confer-
ence documents compliant with the XCON data model; (ii)
blueprints - the set of the Meetecho conference templates,
in the XML XCON data model compliant format as well. A
snapshot of the database content is showed in Fig. 7.

XPath queries are then executed by the CCMP server
whenever needed, for instance to select the conference ob-
ject referred to by the confObjID in CCMP requests, or to
retrieve specific conference information from the XML con-
ference documents grouped in the database collections.

XUpdate queries are instead performed to update the con-
ference documents according to received Meetecho notifica-
tions (generated, for example, as a consequence of a new user
join or leave event) and CCMP client requests (e.g. when
a client sets via CCMP a participant as chair of a certain
floor).

6.4 CCMP-Meetecho integration
As anticipated, our reference conferencing platform, Meete-

cho, does not support CCMP natively. It instead currently
relies on a proprietary protocol, called Scheduler, to handle
conference objects and their manipulation. This protocol
has a limited set of functionality available, which neverthe-
less can be logically mapped in a quite straightforward way
to a subset of CCMP operations. This motivated us into in-
tegrating CCMP in our platform by handling at first CCMP
as a simple wrapper to the operations made available by the
Scheduler. This mapping is presented in Fig. 8.

Specifically, the Scheduler protocol allows a participant to:
(i) create a new conference; (ii) delete existing conferences;
(iii) retrieve the list of available blueprints; (iv) retrieve a
specific blueprint; (v) setting a participant as floor chair of
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Figure 7: An image of the Xindice native XML database used in the prototype

a media; (vi) retrieving the list of users in a conference. All
these operations are made available by CCMP as well, and so
this allowed us to test our prototype CCMP implementation
in realistic scenarios.

The integration was realized by implementing a wrapper
on the server side. We deployed our CCMP server (Tomcat,
JAXB and Xindice) by putting it side by side with the exist-
ing Meetecho server. We then added to the already imple-
mented CCMP server logic a wrapping functionality, in or-
der to handle incoming CCMP requests and translate them
into Scheduler directives accordingly, where applicable, and
viceversa. On the client side, we replaced the Scheduler
client module with our CCMP client implementation and
logic.

The mode of operation is quite straightforward. Any time
a participant issues a CCMP request, it is handled by the
CCMP server. The CCMP server maps the request to the
Scheduler counterpart, translating the message. Such a mes-
sage is then forwarded to the legacy Meetecho Scheduler
server, where it is handled and enforced. According to the
Scheduler reply that is received as a consequence, the CCMP
server takes the related action, e.g. updating the XML con-
ference object on the Xindice database if needed, and pro-
viding the participant with a coherent CCMP response.

An example is provided in Fig. 9.
A dump of the CCMP messages exchanged follows:

ccmpRequest message sent:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ccmp:ccmpRequest

xmlns:info="urn:ietf:params:xml:ns:conference-info"
xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">

<ccmpRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ccmp:ccmp-conf-request-message-type">

<confUserID>xcon-userid:alex@meetecho.com</confUserID>
<confObjID>xcon:8977777@meetecho.com</confObjID>
<operation>update</operation>

<conference-password>1377</conference-password>
<ccmp:confRequest>

<confInfo entity="xcon:8977777@meetecho.com">
<xcon:floor-information>

<xcon:conference-floor-policy>
<xcon:floor id="11">

<xcon:moderator-id>19</xcon:moderator-id>
</xcon:floor>

</xcon:conference-floor-policy>
</xcon:floor-information>
</confInfo>

</ccmp:confRequest>
</ccmpRequest>

Figure 9: A sample CCMP-based interaction involv-
ing protocol mapping

</ccmp:ccmpRequest>

ccmpResponse message received:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ccmp:ccmpResponse

xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
xmlns:info="urn:ietf:params:xml:ns:conference-info"
xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">

<ccmpResponse
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ccmp:ccmp-conf-response-message-type">

<confUserID>xcon-userid:alex@meetecho.com</confUserID>
<confObjID>xcon:8977777@meetecho.com</confObjID>
<operation>update</operation>
<response-code>200</response-code>
<response-string>Success</response-string>
<version>10</version>

<ccmp:confResponse/>
</ccmpResponse>

</ccmp:ccmpResponse>

This simple example shows the process for a typical sce-
nario. In an active conference (identified by its ID 8977777),
a participant, Alex (who happens to be administrator of the
conference), decides to assign a floor chair for the audio re-
source, in order to have it properly moderated by means of
BFCP. In CCMP, this is achieved by issuing a ‘confRequest’
with an ‘update’ operation: the body of the specialized ‘con-
fRequest’ element contains the part of the conference object
that needs manipulation, in this case the floor information
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associated with the existing audio resource. This audio re-
source is identified by means of a floor id (11 in the ex-
ample), which in the conference object itself is explicitly
mapped to the label assigned to the audio medium. Since
Alex is interested in assigning a floor chair to take care of
this medium, he specifies a ‘moderator-id’ (19) which refers
to a specific userID in the Floor Control Server. A password
is also provided (1377) since this operation requires special
permissions.

This request is sent to the CCMP server which, since a
mapping with the Scheduler functionality exists, translates
the message accordingly to the Scheduler format, and sends
the newly created message to the legacy Meetecho Server.
The server handles the request and enforces it, updating
the Floor Control Server policy accordingly. The successful
result of the operation is reported by means of a Scheduler
reply to the CCMP server, which in turn updates the Xindice
database coherently with the request. This means that the
XML conference object associated with conference 8977777
is updated. A success is finally returned to the participant
by means of a CCMP response.

7. CCMP HISTORY AND RELATED WORK
Every time a framework for conferencing has been pro-

posed, the need for a proper Conference Control mechanism
has arisen as a consequence. For this reason, such mecha-
nism has been the subject of a lot of efforts. Nevertheless,
the proprietary nature of most of the conferencing solutions
currently available paved the way to numerous heteroge-
neous and incompatible solutions for such a functionality.
For the sake of conciseness, we don’t provide in this sec-
tion a list of such solutions, considering it would be quite
incomplete. We instead focus on the related work carried
within the standardization bodies. In fact, since the XCON
architecture has been introduced within the IETF, several
different candidates have been proposed to play the role
of the Conference Control Protocol. Such candidates dif-
fered in many aspects, which reflected the discussion within
the standardization fora with respect to the approach that
should be taken in that sense. An interesting debate took
place, for instance, about whether a semantic or a syntactic
approach would be better as a basis for a Conference Control
Protocol. Besides, the best transport means to be adopted
has also been the subject of investigation.

In this spirit, at least three candidates were proposed in
the XCON WG before CCMP was chosen as the official pro-
tocol.

The first proposal, at the end of 2004, was the“Centralized
Conference Control Protocol” (draft-levin-xcon-cccp) by
O. Levin and G. Kimchi. This protocol, as CCMP, was
XML-based and had a client-server organization, but unlike
CCMP it was designed using SOAP as a reference model. It
likely reflected the implementation work carried out within
Microsoft at the time. Despite being in a quite advanced
state (four updates were submitted), the proposal was even-
tually put aside.

Shortly after the first individual submission of the CCCP,
another candidate came to the light, “COMP: Conference
Object Manipulation Protocol” (draft-schulzrinne-xcon-
comp-00) by H. Schulzrinne. Like its predecessors, it heavily
relied on Web Services as a reference, while stressing the use
of SIP for notification purposes. Unlike CCCP, COMP had
a strong semantic approach for what concerned the protocol

specification. No updated versions of the draft were submit-
ted; this work nevertheless paved the ground to a stimulating
discussion that eventually led to CCMP.

One month later, another candidate was proposed, the
“Conference State Change Protocol (CSCP)”by C. Jennings
and A. Roach. Unlike both its predecessors, CSCP took
a completely different approach towards the protocol. In
fact, CSCP was basically a proposal to extend the already
defined Binary Floor Control Protocol in order to allow it to
also deal with conference manipulation functionality. CSCP
motivated such an approach stressing the fact that binary
messages would be smaller and easier to handle, especially
for mobile devices. Besides, it was the authors’ opinion that
every XCON-compliant entity would likely support BFCP
already, and as such CSCP would prove a trivial addition.
Nevertheless, the proposal was eventually abandoned, and
a text-, possibly XML-based solution was decided to be a
preferred approach.

Finally, a last proposal saw the light at the end of 2005,
the individual submission that would subsequently become
the official CCMP draft. Such a draft has seen many revi-
sions and efforts since then, which have resulted in the work
presented in this paper.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the design and implemen-

tation of the Centralized Conferencing manipulation Proto-
col (CCMP), currently on the way towards its steady-state
as a standard IETF protocol for conference objects manage-
ment in the XCON framework.

We highlighted the main motivations behind such a work
and illustrated the complex path that has been followed
within the IETF community along the many phases of the
overall standardization process.

We first described the general structure of the protocol,
as well as its main functionality. Then, we focused on the
work carried out at the University of Napoli during these last
years and centered around a running prototype acting as a
major playground for all the activities associated with on-
going standardization work inside some of the key working
groups of the RAI (Real-time Applications and Infrastruc-
ture) area of the IETF.

At the time of this writing, the specification of the CCMP
protocol is close to completion. Its implementation has been
heavily used to both test its behavior and to provide in-
valuable feedback to the authors of the CCMP document.
Furthermore, to aid implementors, a specific draft focusing
on call flows has been written in order to provide the Inter-
net community with guidelines in the form of Best Common
Practices.

Our future work related to CCMP will definitely concern
the final refinement of the specification, with the goal of
arriving at a well-assessed RFC document. As to the im-
plementation, we are currently working on the integration
of the CCMP server within the Meetecho platform as a ‘na-
tive’ component, in such a way as to avoid the unavoidable
burden associated with proxying CCMP requests and map-
ping them onto the legacy scheduler protocol.

When done with such integration, we will also focus on
carrying out a thorough experimental campaign aimed at
assessing the performance achievable by our protocol imple-
mentation, as well as identifying its potential bottlenecks.
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ABSTRACT
One of the main security objectives for systems connected
to the Internet which provide services like Voice over Inter-
net Protocol (VoIP) is to ensure robustness against security
attacks to fulfill Quality of Service (QoS). To avoid system
failures during attacks service providers have to integrate
countermeasures which have to be tested. This work evalu-
ates a test approach to determine the efficiency of counter-
measures to fulfill QoS for Session Initiation Protocol (SIP)
based VoIP systems even under attack. The main objective
of the approach is the evaluation of service availability of a
System Under Test (SUT) during security attacks, e.g., De-
nial of Service (DoS) attacks. Therefore, a simulated system
load based on QoS requirements is combined with different
security attacks. The observation of the system is based
on black-box testing. By monitoring quality metrics of SIP
transactions the behavior of the system is measurable. The
concept was realized as a prototype and was evaluated using
different VoIP systems. For this, multiple security attacks
are integrated to the testing scenarios. The outcome showed
that the concept provides sound test results, which reflect
the behavior of SIP systems availability under various at-
tacks. Thus, security problems can be found and QoS for
SIP-based VoIP communication under attack can be pre-
dicted.

Categories and Subject Descriptors
C.2.0 [Computer Communications Networks]: Gen-
eral—Security and protection, Data communications; D.2.4
[Software Engineering]: Software/Program Verification—
Reliability ; D.2.5 [Software Engineering]: Testing and
Debugging—Testing tools

General Terms
Security, Verification, Reliability, Performance

IPTComm 2010, 2-3 August, 2010Munich, Germany

1. INTRODUCTION
Voice over Internet Protocol (VoIP) is steadily gaining a
larger user base. Since VoIP communication is based on the
Internet Protocol (IP), new challenges concerning the secu-
rity of telephony arise. Information security objectives like
confidentiality, integrity, robustness and availability must be
achieved [4]. The most prevalent threats to VoIP systems
today are known from data networks [9]. For example, many
threats are known for IP based protocols like SIP and Real
Time Protocol (RTP) for media transport in VoIP systems.
VoIP specific protocols like Session Initiation Protocol (SIP)
for call signaling increase the attack surface of such systems
which requires new countermeasures for additional vulnera-
bilities in VoIP-telephony. The four largest threats faced by
service providers today are Denial of Service (DoS), Service
Abuse and Fraud, Spam over Internet Telephony (SPIT),
and Eavesdropping (see Abdelnur et al. [1]). Keromytis
mentioned that Service Abuse and DoS need more research
[15].

The common similarity of different VoIP solutions is that
all data is fully transmitted over IP. This includes media
data (e.g., speech) and signaling data. This is not the case
in traditional telecommunication systems which use Signal-
ing System 7 (SS7)1 for signaling. Data transfer is circuit
switched and not packet oriented. These may transport IP
traffic, but are not based on it. Today, VoIP and tradi-
tional telephony have an architectural split of signaling and
transmission of media in common. For VoIP signaling, two
protocol standards are commonly used: H.3232 and SIP [22].

In this paper, the focus is on SIP which is defined by the
Internet Engineering Task Force3 and is designed to setup
bidirectional communication sessions, not limited to only
VoIP calls. If used for VoIP, it is recommended to use it
with Session Description Protocol4 (SDP) and Real Time
Protocol5 (RTP).

The focus of availability [4] is to assure information and

1http://www.itu.int/rec/T-REC-Q
2http://www.itu.int/rec/T-REC-H.323
3http://www.ietf.org
4RFC 4566
5RFC 3550
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communication services will be ready for use when expected.
Attempts to block or reduce availability are called Denial of
Service attacks or Intentional Interruption of Service. DoS
attacks on SIP systems cause loss of service to the users of
that system [6]. When talking about DoS attacks in this
paper we refer to network based attacks which are executed
remotely over the network against services. This may be via
the public Internet or on a local network, but without direct
access to the operating system or the hardware of the target
system.

Depending on the software used and the architecture of the
system, different countermeasures are possible for protect-
ing the VoIP system against availability failures. Regardless
of the methods used, they should be evaluated on their ef-
fectiveness by testing. When evaluating the security of a
given SIP based solution a software/system tester should be
able to answer the question under which attack scenarios a
certain Quality of Service (QoS) requirement or a Service
Level Agreement (SLA) can not be met anymore.

We will present a security test concept which provides basic
mechanisms to realize and execute such a test of availability
against a SIP system. Thus, the evaluation of availability of
SIP based VoIP systems will be examined by executing load
and performance tests together with different types of DoS
attacks, i.e., multiple test techniques are combined. The
central idea for the security test concept is to simulate user
load on a server as for example defined by QoS requirements
while at the same time also performing DoS attacks. From
the measured change of real time behavior effects of DoS
attacks can be measured. Therefore, the results of a normal
load without attacks can be compared with the results made
during attacks. The concept is implemented as a black-box
approach. This way, the internals of the system are not
relevant for testing. Our traffic simulation only verifies and
records output and response time of the interactions with the
SUT. The test criteria for the defined concept for each imag-
inary user is service availability, basic functional correctness,
and performance. We suggest a concept and describe a proof
of concept test environment that makes it possible to define,
execute, and evaluate such tests. However, a final set of test
cases for SIP based VoIP systems will not be defined. The
concept can be integrated into an existing comprehensive
test process consisting of, for example, functional tests, per-
formance tests, penetration tests etc. Such test processes
already exist in most large IT infrastructures.

The remainder of this paper is structured as follows: Sec-
tion 2 lists related work. Section 3 introduces the used se-
curity verification concept and points out the specific re-
quirements for testing availability aspects during security
attacks. Section 4 gives details about implementation of the
test concept. The test approach and the implemented proto-
type were evaluated by doing several security tests which are
presented in Section 5. The paper finishes with a conclusion
and ideas for future work in Section 6.

2. RELATED WORK
An overview of current VoIP Security research is given by
Keromytis in [15]. He identified two specific areas (DoS
and service abuse) as being underrepresented in terms of re-
search efforts. Peng et al. publish basic classification and de-

scription of DoS and Distributed Denial of Services (DDoS)
prevention methods in [19], where countermeasures are dis-
tinguished in Attack Prevention, Attack Detection, Attack
Source Identification and Attack Reaction. To ensure avail-
ability for SIP based services, a time critical method distin-
guishing between valid and malicious requests is required.
In [3], Akbar et al. present an approach focusing on evo-
lutionary algorithms to detect flooding attacks against SIP
based VoIP systems. Countermeasures can also simply en-
tail ensuring that enough resources like bandwidth, CPU
time, memory, etc. are available and good implementa-
tions and configurations are chosen. Keromytis calls for
additional effort at securing implementations and configu-
rations [15] and also states in [16] that complex systems
with default configurations remain a problem. Sisalem et al.
show that the first line of protection starts by deploying a
high-performance infrastructure [24]. This work points out
that different approaches to protect systems against secu-
rity attacks are available and after implementation a test of
effectiveness is required.

Testing VoIP systems is an important method for revealing
DoS vulnerabilities independent from their origins. Security
testing approaches for SIP implementations focus testing in
order to discover implementation vulnerabilities. For exam-
ple, PROTOS test suite6 finds DoS vulnerabilities by ma-
licious INVITE packets, but does not mention flooding at-
tacks. Although focusing on automated penetration tests, in
[2] by Abdelnur et al. DoS vulnerabilities are mentioned, but
flood attacks are not considered. These approaches could
not verify how the behavior of SIP systems may change un-
der system load during flooding attacks. Some SIP flood-
ing attack examples are briefly described and evaluated by
Endler and Collier in [8]. A systematic concept is missing
in this work, though. A comprehensive testing platform is
presented by Srinivasan in [25] which provides security tests.
It additionally briefly considers simulated flooding attacks.
Ming et al. demonstrate SIP vulnerabilities by CPU based
DoS attacks in [17]. In [20] Rafique et al. evaluated DoS at-
tacks against SIP proxy implementations and showed that
those are vulnerable against different DoS attacks. They
based the analysis on black- and white-box tests. The ap-
proach is similar to ours but we focus on integrating simu-
lated security attacks into the test process and combine it
with other test techniques of the test process, e.g., perfor-
mance or penetration tests.

Performance testing of SIP is described from Montagna et
al. in [18] and Schulzrinne et al. in [23]. Performance testing
is one part of our approach to generate required load.

We suggest a more comprehensive security verification ap-
proach towards an iterative test process. Foundations, prin-
ciples and terminology of general software testing are taken
from [6, 12, 13, 14].

General requirements for testing QoS in case of security at-
tacks are gained. Attack types should not be limited. In-
stead various attack types are used and using threat model-
ing is suggested. Black-box testing detaches from the tested
systems, generalizes the test environment and includes con-

6http://www.ee.oulu.fi/research/ouspg/protos/
testing/c07/sip
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Figure 1: Basic Test Environment of the Security
Test Concept

figuration weaknesses. Additionally, aspects of QoS, test
coverage, and traffic modeling are introduced to the test ap-
proach. Most common SIP scenario examples are given in
RFC3665 [7], which can be used to create traffic models.
According to Endler et al. (see [6]) traffic is defined as the
flow between any collection of network traffic nodes. For the
security test concept it has to be decided on a traffic model
which should be an approximation to real user interaction
with the SUT. The traffic model has to reflect the number of
users and their use case scenarios. Jung-Shyr et al. propose
a VoIP Traffic Model for SIP signaling in [26]. For the pro-
totype of the framework presented in this paper some attack
implementations are based on examples from [8]. Hassan et
al. introduce advanced traffic modeling for SIP in [10].

3. VERIFYING AVAILABILITY ASPECTS
DURINGSIMULATED SECURITY INCI-
DENTS

When providing services for users, availability is one of the
main objectives. In many large IT infrastructures, Service
Level Agreements (SLAs) exist that define availability re-
quirements. If those requirements cannot be fulfilled, most
of the time punitive damages occur. An attacker may find
a method to make service unavailable or to disturb it. If an
attack is successful, call setup may not be possible, it could
take too long or a call may not be released. In all cases,
the attack has an impact on the users and the performance,
the QoS requirements are not met and possible SLAs are
violated. Measuring the influence an attack has on the user
of a service is the basic idea of our approach of a security
test concept for VoIP.

3.1 Security Attacks
A network based DoS attack can be achieved in two basic at-
tack methods (see [5, 24]): (1) Consume available resources
and (2) bring the system into a faulty state. A third option
is a combination of both: Consume the available resources
by bringing a lot of system processes into a (faulty) state
which needs a lot of resources. Consuming resources can be
achieved with attack methods like Flooding, which is pos-
sible on various protocol layers. Limiting the availability
by bringing the system into a faulty state requires to com-
promise either the whole system or only particular processes.
Therefore, possible exploitation of known vulnerabilities and
design weaknesses have to be tested [5]. This is achieved by
sending malformed messages or by disturbing an ongoing
valid communication by spoofing.

3.2 Basic Verification Concept

Valid SIP traffic and simulated attacks are combined in a
test case. Figure 1 illustrates the basics of the security test
concept. The tested system providing the services is referred
to as System Under Test (SUT ). Hereby, it is important to
clearly define a border where SUT ends and the Test En-
vironment begins. For example, it can simply be the SIP
implementation, the whole server or a whole server infras-
tructure including attack detection and prevention systems,
etc. Usual SIP traffic represents the simulation of a certain
number of valid users of the SIP service, for example a SIP
proxy/registrar. A point to measure this traffic is observed,
various metrics are recorded and change of QoS is recognized
here. The simulated load should be at a normal range, e.g.,
requirements on QoS should be met, because the presented
security test concept is not a common performance test or a
stress test. In addition to the simulation of valid users using
the SUT, every security test simultaneously includes a simu-
lated security Attack. To evaluate the influence of a certain
conducted security attack, only the change of user traffic is
controlled. The success of an attack is defined by the extent
of influence on user interaction during attack time. Test re-
sults are gained by analyzing the interactions of simulated
user scenarios with and without an attack. The main ca-
pabilities of the Test Environment have to be (1) control
simulation of valid and malicious interaction with the SUT
and (2) record expressive metrics.

3.3 Used Availability Metrics
As a black-box test, we only measured calls at the User
Agents’ (UA) side. In this context a call is an execution of
one single SIP scenario. It might be a telephone call (start-
ing with the SIP INVITE message, transmitting voice data,
ending with the SIP BYE message), but can also be a SIP
registration, a message, etc. A call is composed of one or
more SIP transaction(s), which starts with a SIP request
and ends with a response. We count the absolute number of
calls c during a certain time interval [ti, tj ]. We distinguish
between call attempts ca, calls which are completed success-
ful cs, and calls which are not completed and fail cf . The
criteria when a call fails must be defined by test criterion (see
Section 3.6) and implemented into the call scenario. Addi-
tionally the number of all SIP retransmissions r is counted.

A rate (RE) is an average value, which expresses a certain
number of events per unit of time. Without a mean value,
the number of calls is not expressive and comparable in cases
of various length of time intervals. For example, Call Rate
is calculated by CRE = c

tj−ti
. Accordingly, we use the

Call Attempt Rate as CREa = ca
tj−ti

, Call Success Rate as

CREs = cs
tj−ti

, and Call Failure Rate as CREf =
cf

tj−ti
.

The unit used is calls per second (cps). We will concen-
trate on CREa and CREs. The reason for that is that the
start of a call can be in a different time interval than the
end (see Figure 2 and Section 3.4). The decision that a call
has failed can only be made after a certain timeout. There-
fore, both rates are not complements within a time interval
(CREs[ti,tj ] + CREf [ti,tj ] ∼ CREa[ti,tj ]). Only for all calls
in an interval from the beginning of the simulation to the
end of it ([t0, t5], see Figure 2) the equations ca = cs + cf

must be true. This implies waiting for the last timeout of
every session before analysis can start.
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Figure 2: Phases of the Executed Test Presented as
Time Line

Further relevant rates are the Retransmission Rate (RRE =
r

tj−ti
) for SIP UDP retransmissions, UDP Attack Rate for

attack packets per second sent to SUT and Data Rate for the
number of bits that are transmitted per unit of time with
usual units kbit/s and Mbit/s. In this context, the total
size of the packets, which are sent over the physical layer, is
relevant.

Ratios (RO), different values, especially rates, are related to
each other. For example, the Call Success Ratio (CROs =
CREs
CREa

). A further useful ratio is the average of Retrans-

missions per call (RPC = RRE
CREa

) during a period of time.
During an attack, RPC is assumed to increase. It also re-
flects the additional traffic caused by the SIP retransmission
mechanism. Another expressive metric is the Call Duration
Time tcs of successful calls or the average of them (t̄c) dur-
ing an interval. In our test example in Section 5 we use both
CROs and RPC.

3.4 Measurements During Test Execution
The proposed security test concept must distinguish between
different phases of a test case to evaluate the influence of an
attack. This is done by dividing the time of testing into sec-
tions as it is shown in Figure 2. Simulated user interaction
begins at t0 and lasts until t4. During that time, an attack
is started from t2 to t3. Recording and measurement of the
test case begins at t1. These five points in time mark the
following phases: Startup phase (t0 to t1), Pre-Attack phase
(t1 to t2), Attack phase (t2 to t3), Post-Attack phase (t3 to
t4), and Shutdown phase (t4 to t5).

The Startup phase is the beginning of the test run. Its pur-
pose is to bring the user load to a defined number. Its length
depends on the traffic model and duration of single SIP calls
and transactions. Scenarios should be started in parallel (see
Section 4.1) and it may take some time until the full load
is set up. From the view point of the SUT, this means that
the allocation and release of resources is at the valid and
intended level. At t1, the full level of load is reached for
sure, so measurement starts. The Pre-Attack phase mea-
sures timeouts and failures before attack. It is necessary
to ensure that simulated traffic is running with normal load
and failure rate. Results from the Pre-Attack phase can
be compared to results from other test phases occurring at
later steps. This way the relative impact of an attack can be
measured and reported. In the Attack phase, timeouts and
failures which appear during the various conducted security
attacks are measured. At t2, the security attack defined
by the test case starts. If a security attack is successful,
starting from t2, effects should be measurable at the testing
framework simulating the user interaction. The duration
of this phase strongly depends on the type of attack. A
flooding attack has to be long enough to predict behavior





 






Figure 3: Model of Used Test Case Specification

of SUT on longer attacks. For example, a flood attack with
a duration of 10 seconds would increase retransmissions by
UAs, but no call would fail. Only after a transaction time-
out the failure of a call can be decided. Timeouts and call
duration of the used scenarios have to be considered when
attack duration is calculated. On the other hand, for a vul-
nerability exploit attack which consists of only one single
request, the duration of the Attack phase will be relatively
short. In the Post-Attack phase timeouts and failures, oc-
curring after the attack has stopped, are measured. In this
phase, user load results are recorded in the same way it is
done in the Attack and Pre-Attack phases. The Shutdown
phase ends the test case and stops the UA simulation. For
verification of whether the measurement mechanisms work
correctly (ca = cs +cf ), availability metrics (see Section 3.3)
are used.

After testing, only the recorded metrics of the main phases
(Pre-Attack, Attack, and Post-Attack) are used for further
analyses. By comparing test results from different phases
of the test case the efficiency of security measures can be
determined. To distinguish result metrics from different
phases we add a postfix to the identifiers and refer to them
as CREPRE, CREATT , CREPOST , RPCATT , etc.

During implementation we found that one of the most in-
teresting comparisons are Pre-Attack to Attack and Pre-
Attack to Post-Attack. The former will reveal influences
of the attack whilst it is performed. It can be defined as
CROsATT/PRE = CREsAT T

CREsP RE
. CRO expresses the degree

of successful calls whilst in the Attack phase, in compari-
son to the Pre-Attack phase. The latter comparison reveals
whether or not the SUT undergoes a lasting influence after
the exection of security attacks. This is the case when, for
example, an attack brings the system to a state of permanent
failure or the attack initiats a long lasting recovery proce-
dure. It can be expressed as CROsPOST/PRE = CREsP OST

CREsP RE
.

3.5 Requirements For Test Case Specification
One critical part of a security test concept is the test case
specification as mentioned by Kapfhammer in [14]. The first
step must specify which system has to be tested and against
which requirements. These two issues are illustrated in Fig-
ure 3 as System Under Test and Requirements on Avail-
ability. The requirements on availability have various input
sources like SLAs, QoS definitions, security requirements,
etc. Representativeness of attack scenarios and user work-
load has to be given.

The Traffic Model defines all call scenarios which are ex-
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pected to work. Additionally, it defines traffic load at dif-
ferent levels, e.g., it may even stress the SUT. Security
requirements must consider possible attacks by a Threat
Model. The model should contain possible security attacks,
the plausibility of occurrence and the damage they would
cause in such a case. The Test Criterion defines which be-
havior is expected under various conditions.

3.6 Test Criteria
In functional software testing the term pass/fail criteria is
used. The IEEE Standard for Software Test Documenta-
tion [11] defines the term as “Decision rules used to deter-
mine whether a software item or a software feature passes or
fails a test.” With a minor adaption this definition is suit-
able for security tests regarding availability, too. Since non
functional requirements are tested, features are replaced by
various availability requirements. QoS can be defined as a
minimum on call success ratio CROs. For example: “Call
setup with INVITE has to succeed in 99.7% of all attempts
(CROs = 0.997)”

Usage of fail/pass criteria is required for two different lev-
els: scenario level, which represents single transactions, and
availability level, which is the aggregation of all transactions.
The fail/pass criteria on scenario level must be defined for
a single scenario (see Figure 4). Correctness is checked at
the scenario level and given when a communication is com-
pleted successfully within a defined time. A scenario fails if
the response time is too long or from an unexpected result
from the SUT. A fail/pass criteria on availability level is set
for a traffic model. It executes a number of different scenar-
ios which have to be successful to a certain degree. If more
than a specified number of scenarios fail, the availability is
not given and the security test fails.

A further general post condition for every test case can be
that Pre-Attack results and Post-Attack results should not
differ significantly. If they are not equal, the system suffers
ongoing damage from the security attack. This means that
the security measures taken are not sufficient to protect the
SUT from the conducted security attacks.

4. IMPLEMENTATION OF A PROTOTYPE
One of the principles of our security test concept is that it
should be based on established evaluation and test methods.
Moreover, our security test concept is a test of system per-
formance during a DoS attack. The objective is to stress
the SUT while at the same time including further security
attacks. The test results, figures and statistics are similar
to performance tests. Also, the simulation of UAs is alike.
Existing simulations of user interaction, tools, techniques,
and statistical analyzing methods can be reused.

Concerning security attacks these simulations may range
from simple exploit scripts up to more complex penetration
tests or fuzzing tools. New ideas for testing and attacking
can be implemented quickly by scripting. With respect to
the simulation of UAs various load generation tools are us-
able.

Based on the implementation of a prototype we verified our
security test concept for testing QoS in case of security inci-
dents for SIP-based VoIP services. The results of using the









 












Figure 4: Model of Test Case Definition

developed prototype are shown in Section 5.

The implemented prototype supports a tool chain which en-
ables the generation of test cases out of defined attacks and
traffic models. Therefore, the main focus for the security
testers can be the definition of attacks and the interpreta-
tion of the test results obtained by the prototype.

4.1 Test Case Description
A test case in our security test concept is an aggregation of
a Traffic Model, one or more Security Attacks and a set of
Times (t0, t1, t2, t3 and t4). A model of items a test case can
be composed of is shown in Figure 4.

The Traffic Model is an aggregation of one or more User
Load(s). A User Load is a single type of scenario (e.g., regis-
tration or call setup through a SIP proxy) with a certain Call
Attempt Rate CREa. This is a simplified concept of a Traf-
fic Model adapted for the SIPp7 traffic generator. Different
scenarios are executed in parallel. This represents a sim-
ple approximation of real users interactions. In more com-
plex setups, generators with advanced functions and models
closer to reality can be used instead.

As mentioned in Section 3.5 an important issue in this secu-
rity testing concept is that such a User Load must also define
test fail/pass test criteria (Test Criteria in the model) for
a single scenario. It could be implemented as a timer into
the scenario, so that a scenario fails because of a timeout
defined by the test case.

Often, test results of single scenarios are not meaningful in
themselves, expressive results can only be calculated after
the execution of all scenarios of a test case, e.g., the mean
time of all responses has to be calculated at the end of a test
case. This way, the impact of an attack on a certain kind of
user traffic and therefore QoS can be seen.

4.2 Design of the Test Environment
The main task of the security test prototype which executes
test cases is to start and stop processes at a defined time. A
further requirement is to be able to track all relevant events
7SIPp: Open Source test tool/traffic generator for the SIP
protocol (http://sipp.sourceforge.net)
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Figure 5: Sequence Diagram of Test Execution

during a security test by logging. In Figure 5 the implemen-
tation of the prototype is shown as a sequence diagram.

For our approach we used the SIPp framework for simulating
the UAs, for measurement and for the statistics. The frame-
work was not modified and is only started and stopped by
a wrapper. This architectural decision makes it possible to
easily replace the traffic simulation with other load generat-
ing tools. The complete interface to load generating tools is
encapsulated into a wrapper. For example, the stopping of
SIPp needs special handling, which the implemented SIPp
wrapper considers. The same wrapper principle is used for
the attack execution. It can start and stop various attack
processes concurrently and supplies starting parameters (see
aggregation of attack in Figure 4). Security attacks which
are able to manipulate packets at the IP level (e.g., IP ad-
dresses to simulate DDoS attacks) need raw socket access
and respective system privileges. In large IT infrastructures
the setup can be distributed. This enables even greater scal-
ability.

5. RESULTS
In order to evaluate the security test concept a test was de-
fined and executed within a test environment. The first part
of this section will present a definition of the test used for
getting the presented results. The test scope is simplified
in various aspects due to illustration purposes. The second
part describes test results and illustrates them by diagrams.
First, a performance test is analyzed which determines gen-
eral system performance. Afterwards, results of a single test
of a DoS attack by malformed SIP MESSAGE requests are
presented. Next, the same attack type is illustrated with
different call and attack rates. As a comparison an INVITE
flood attack is shown in the same manner thereafter. Fi-
nally, various flooding attack types, e.g., UDP Flood and
SIP REGISTER Flood, are compared.

Based on the results conclusions about behavior of the SIP
service can be made. A general DoS vulnerability of UDP
based SIP systems could be confirmed during the testing of
the security test concept. Moreover, multiple impacts of DoS
attacks of VoIP services could be shown with our prototype.

Alice Registrar

REGISTER

401 Unauthorized (+ authentication nonce)

REGISTER (+ authentication response)

200 OK

User registed

Figure 6: Simple Traffic Model of SIP Registration
Scenario With Authentication [7]

5.1 Definition of a Test Task Example
As the SIP server implementation, Kamailio (OpenSER)8

version 1.5.3 was chosen. It is connected to a MySQL database
version 5.0.51. The operating system is an Ubuntu Server
8.04 (Linux 2.6.24) with default settings, i.e., no hardening
was done.

Before executing a black-box security test regarding avail-
ability it has to be ensured that the dimensions of the test
environment are sufficient and the test environment works
correctly. Test results must not be distorted by a lack of sys-
tem resources of the test environment, e.g., the performance
of client systems or routers, which are not the subject of the
test, has to be checked.

For demonstration purposes our example test scenario in-
cludes a simplified traffic model with one scenario type (SIP
Registration with Authentication) with five different Call
Rate Attempts CREa (see Figure 6 and [7]). This repre-
sents one scenario which is mandatory for every usual SIP
communication. If an attacker achieves disruption of the
registration service, users could not be reached any longer.
The threat model has a scope of five attack types with six
attack rates (30 different attacks). Testing all possible com-
binations results in 150 test cases (30 attacks * 5 traffic
models). To evaluate the influence of a workload we define
different possible call rates (105, 210, 315, 420 and 525 cps).
This test example is about finding the right dimensioning
of a system to ensure QoS under attack. Instead of test-
ing various call rates, different SIP software, SIP servers,
countermeasures, configurations, etc. could be tested and
compared the same way as it is done here on call rates.
Furthermore, for a detailed definition of a test case, testing
times are needed and user load and attack call rates have to
be selected (see Figure 4).

In the case of a successful DoS attack, users cannot regis-
ter and are not able to be reached via SIP. As an average
registration expiration time, 300 seconds are expected. This
causes a certain amount of valid traffic which depends on
users per registrar as shown in Table 1.

The workload is related to a maximal load, which was em-
pirically evaluated by a performance test.

8Kamailio (OpenSER): The Open Source SIP Server (http:
//www.kamailio.org)
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Table 1: Equivalence of Registration CREa [cps],
Currently Registered Users, Workload, and Data
Rate.

Registration
CREa [cps]

Currently
Registered
Users

Workload
(% of max.)

Data Rate
[kbit/s]

105 31500 15% 761
210 63000 30% 1520
315 94500 45% 2310
420 126000 60% 3028
525 157500 75% 3800

Table 2: Attacks Used for Test Case Specification
Flood Type Package

Size
[Byte]

Target Layer, Target Com-
ponent

UDP 1414 syntax and encoding, con-
suming bandwidth

INVITE 1102 transaction, transaction
user, consuming system
resources

MESSAGE
malformed

402 syntax and encoding, con-
suming system resources

REGISTER 328 transaction user, database,
consuming CPU

REGISTER
malformed

1422 syntax and encoding, con-
suming CPU

In accordance with the description of Test Criteria in Sec-
tion 3.6, two level criteria must be defined: For the fail/pass
criteria at the scenario level, the default SIP timeout is used:
After 32 seconds without response to a SIP request the call
fails. For the fail/pass test criteria at the service level we de-
fine two criteria: The first is deduced from QoS requirements
for operation without security attack aspects: “A minimum
of 99.9% registrations must be successful.” This means the
Call Success Ratio has to be CROs > 0.999. The second
criteria takes a security attack into account and in such a
case a tolerant QoS is expected: “During a security attack
a minimum of 80% of UA registrations should be success-
ful within 32 seconds (default SIP timeout).” In this case
retransmissions are allowed, nevertheless, CROsATT > 0.8
should be fulfilled. Therefore, a successful DoS attack is
given if more than 20% of registering UAs could not register
and would not be reachable.

The Threat Model in our test case example consists of a set of
five flooding attack approaches and types, e.g., UDP floods,
INVITE floods, malformed MESSAGE floods, REGISTER
floods, and malformed REGISTER floods by using a big
but valid header. This way, the attacks represent flooding
on various protocol layers. Further attacks are just flood-
ing and flooding with malicious malformed packages. An
overview is given in Table 2. The attack rate is 1000, 3000,
5000, 7000, 9000 and 11000 packets per second. The first
approach is to flood by big sized, meaningless non SIP UDP
packets on the default SIP port 5060. The second flood
type is sending SIP UDP requests with a malformed and
malicious header information (MESSAGE request). Both
flooding approaches target the SIP parsing layer. Next, two



















        













Figure 7: Result of a Performance Test to Evaluate
the Maximum Workload Under Normal Conditions

attacks target the SIP application layer by sending the valid
requests INVITE and REGISTER are executed. Another
REGISTER flood has a valid header, but is malformed by
having a lot of redundant information.

For the Phase Duration Times it has to be considered that
for the load test tool used the logging time must be set.
This is the time the result statistic will be summarized and
stored. If it is too short, the resolution is very high and
too much data for further analysis will be produced. There-
fore, we set the logging time to 15 seconds for SIPp and
Phase Duration Times accordingly (t0 = 15, t1 = 120, t2 =
180, t3 = 120, t4 = 15 seconds). One test case lasts 450
seconds. Since we have 150 possible test cases in our test
example, the minimum testing duration for all test cases is
18 hours and 45 minutes.

5.2 Performance Test Results
First a performance test was made with the same user load
and test criteria as used for security tests later. The result
shows system performance under normal conditions. The
performance test was done by increasing load in steps by
105 calls per second. Figure 7 shows the results. The reg-
ister scenario (see Figure 6) consists of two SIP requests.
In Figure 7 it can be seen that up to 735 cps, the system
has no failing calls. Failures start slightly at 840 cps, but
increase steeply. Successful calls start to decrease at 945
cps. To have a little buffer, the maximum workload is set to
CREaMAX = 700 for further tests.

Additionally, the dotted lines in Figure 7 show what nor-
mally would be expected from a network service: A certain
amount of requests can be handled and the rest is rejected
and failures increase by the same amount as the request rate
does. However, in our case call success decrease quickly with
increasing load. The reason for this behavior is the SIP re-
transmission mechanism for UDP based transport [22]: For
every unanswered SIP, a non-INVITE request retransmis-
sion is done after a time. With default SIP timers SIP UAs
send up to 9 UDP packets per request (see Figure 8). As a
pass/fail criteria at the scenario level, the default RFC3261
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Figure 8: Registration Scenario With UDP Trans-
port When Registrar is not Answering

















































 



  
















 

Figure 9: Flood With Malformed MESSAGE Re-
quest With 3000 UDP Packets per Second and 315
cps Call Rate

timer F is used (32 seconds). After timer expiration, the
call is failed by timeout. This means, if a service does not
answer, because it is overloaded, UAs start to increase the
load. This way UAs amplify the traffic and in a way support
DoS attackers. This is an architectural SIP problem and is
discussed by Rosenberg in [21].

5.3 Results With Simulated Security Attacks
Figure 9 shows the result of a test case execution with a
call rate at 315 registrations per second. SIPp dumps re-
sults every 15 seconds into the results file, that is 4725 calls
during a 15 seconds period. During Pre-Attack phase no
single call failure occurred CREsPRE = 315[cps]. After 135
seconds, a security attack (DoS) starts and the number of
successful calls decreases under 2000 calls within the first 15
seconds. There are no failing calls, because of the retrans-
mission mechanism for UDP transport. By default, retrans-
missions are done for 32 seconds until Timer F (see [22]) fires
a timeout (see Figure 8). That is why after 30 seconds of the

     
















































Figure 10: Effect of Malformed MESSAGE Flood
Illustrated by Different Attack and Call Rates

attack the first calls fail. The rest of the attack phase only
about 40% of call attempts result in successful completed
calls. The peak at the beginning of the Post-Attack phase
is also a consequence of retransmissions which can now be
handled because the attack has stopped. Call failures in this
phase are caused by the large number of retransmissions.

The Post-Attack phase has 100% successful calls and so no
enduring effect was caused by the attack. To reduce test
case results to a single figure, CROsATT/PRE is calculated as
follows: Within the time interval of [180, 300] seconds 37802
call attempts were executed (CREaATT = 315.02), 21618
call failures happened (CREfATT = 180.15), and 15747
calls were completed successfully (CREsATT = 131.23). As
mentioned in Section 3.3, failed and succeeded calls are not
complements (CREsATT +CREfATT ∼ CREaATT ). To re-
duce complexity, CREfATT is withdrawn and CREaPRE =
CREaATT is assumed.

CROsATT/PRE =
CREsATT

CREsPRE
=

131.23
315

= 0.42

This means that only 42% of the expected successful calls
actually were successfully completed. None of the test cri-
teria CROsATT > 0.99; CROsATT > 0.8 is fulfilled and the
SUT failed the security test and thus the QoS requirements.
CROsATT/PRE can also be referred to as the probability
that a single call is completed under attack. To illustrate
the effect of the attack, in Figure 11 the probability that a
single call fails is calculated (Pf = 0.58).

Every data point in Figures 10, 11, 12, and 13 represents a
single test case result. The influence of different workload on
a SIP server instance is visualized by different lines in Fig-
ure 10 for a malformed MESSAGE flood and in Figure 11
for an INVITE flood. In Figure 12 and Figure 13 the dif-
ferent lines represent types of attacks and their influence on
the same workload of 315 cps.

Tests are missing the test criteria when they are above the
criteria lines. For example, it can be seen in Figure 10,
which shows a malformed MESSAGE flood, that nearly all
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Figure 11: Effect of INVITE Flood Illustrated by
Different Attack and Call Rates

tests pass a DoS attack at 1000 packets per second. The
single exception is at a call rate of 525 cps. In this case 1000
packets per second are enough that the defined QoS cannot
be met. DoS attacks with 3000 packages per second have
a much greater impact on QoS requirements. In this case,
the QoS requirements can only be met with a maximum
workload of 105 cps. All tests with 5000 pps and above fail.

This result can be compared to the INVITE flood shown in
Figure 11 where at 1000 pps no test fails, at 3000 one test
fails against the CROsATT > 0.99 criteria, and so forth.
Finally, at 9000 pps all tests fail.

A further metric used for flooding attacks is the network
load. In Figure 13 the results of all five tested attacks are
set in relation to the amount of data sent over the network.
In this scenario, a Malformed MESSAGE Flood attack has
the most influence: At 15 Mbit/s over 90% of all calls fail.
All other attacks need over 79 Mbit/s to reach this value of
CREf . For UDP Flood and Malformed REGISTER Flood
attack the failures start to increase at about 10 Mbits/s.
The INVITE Flood starts at about 35 Mbit/s, but the effect
of the DoS attack increases in a fast way. The REGISTER
Flood was tested with up to 11000 packets per second, which
equalizes 29 Mbit/s but it has no visible effect on the users.

6. CONCLUSION AND FURTHERWORK
The suggested black-box test approach, test process and test
implementation is able to predict the behavior of SIP com-
munication under various attacks. The influence on various
types and amount of user interaction is considered. It is pos-
sible to determine attacks and conditions where certain QoS
requirements are not met. Results showed that a certain
attack type has greater impact at the same attack strength
than others, so it is essential to test various attacks to get
more comprehensive results for security tests and thus pre-
dictions of compliance with the QoS requirements. Even
though a small set of attacks was chosen, unexpected sys-
tem vulnerabilities became obvious. A wider spectrum of
tests could certainly identify further security problems.

     














 

























Figure 12: Attacks Compared by Different Attack
Rate (Packets per Second)

          












 



























Figure 13: Attacks Compared by Different Attack
Rate (Attack Data Load in Mbit/s)
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A potential improvement is to shorten execution time of test
cases. A further area of investigation is to establish models
for both the attack scenarios and the user workload. For
choosing representative attacks, existing threat models of
SIP service could be consulted. Additionally, possible DoS
attacks against RTP payload could be taken into account.
The traffic model should be based on statistics of real VoIP
systems, for more realistic simulation of user interaction.
Another kind of research may be done on iterative cyclic
test processes hardening VoIP systems using this concept.

Functional tests, performance tests and penetration tests
are often executed in large IT infrastructures. In this pa-
per we showed that this is not enough for building systems
with high availability requirements like SIP-based VoIP ser-
vices. Our results indicate that by combining multiple test
techniques like performance and penetration tests it is pos-
sible to evaluate quality of service requirements and greatly
enhance the security level of critical services.
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ABSTRACT
The presence of restrictive network address translators (NATs)
and firewalls prevent nodes from directly exchanging packets
and thereby pose a problem for peer-to-peer (p2p) commu-
nication systems. Skype, a popular p2p VoIP application,
addresses this problem by using another Skype client (relay)
with unrestricted connectivity to relay the signaling and me-
dia traffic between session endpoints. This distributed tech-
nique for addressing connectivity issues raises challenging
questions about the reliability and latency of relayed calls,
relay selection techniques, and the interference of relayed
calls with the applications running on relays – a phenomena
we refer to as user annoyance.
We devise a framework to analyze reliability in peer-to-

peer communication systems and present a simple model to
estimate the number of relays needed for maintaining the de-
sired reliability for the media sessions. We then analyze two
techniques for improving the reliability of relayed calls. We
present a distributed relay selection technique that leverages
a two level hierarchical p2p network to find a relay in O(1)
hop. We augment our distributed relay selection technique
to find a relay that minimizes call latency and user annoy-
ance. Our results indicate that for Skype node lifetimes, at
least three relays are needed to achieve a 99.9% success rate
for call duration of 60mins (95th percentile of Skype call
durations).

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Reliability, availability,
and serviceability]

General Terms
Design, Reliability, Measurement

Keywords
Reliability, P2P, VoIP, Relay
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1. INTRODUCTION
Restrictive network address translators (NATs) and fire-

walls prevent hosts from directly exchanging packets. A re-
cent survey of 1,787 NAT devices indicates that hosts be-
hind approximately 30% of these devices cannot traverse
the NATs using UDP or TCP [3] implying that hosts behind
two different such devices are not likely to directly exchange
packets without an intermediary. Moreover, corporations
are increasingly deploying firewalls to protect their networks
from malicious traffic that originates both outside and inside
their networks. The restrictive NATs and firewalls pose a
problem for IP communication systems because they pre-
vent the user agents from directly exchanging signaling and
media traffic.

In a client-server (c/s) communication system, the caller
user agent discovers the current network address of a callee
user agent through a managed server and exchanges sig-
naling information with the callee user agent to establish
a media session. The media traffic flows directly between
the user agents. To address the connectivity constraints due
to restrictive NATs and firewalls, c/s systems such as Von-
age [8] use managed servers for relaying the media traffic
between user agents with restrictive connectivity. In con-
trast, in a peer-to-peer (p2p) communication system, there
are minimal or no servers. The user agents collaborate to
discover the network address of the callee user agent and
then directly exchange signaling and media traffic to estab-
lish a media session. When the user agents behind restrictive
NATs and firewalls cannot directly exchange packets, they
rely on user agents (or peers) with unrestricted connectiv-
ity for exchanging signaling and media traffic. Skype is an
example of a peer-to-peer communication system that uses
this technique [9]. Suh et al. [29] report hundreds of calls
being relayed by a Skype relay.

The above characteristics of a p2p communication sys-
tem pose unique challenges for a system designer. First, the
lookup performance in p2p systems must at least be as effec-
tive as the lookup performance of client-server systems. Ad-
ditionally, a media session may be prematurely terminated
because a relay peer goes offline. This issue necessitates a
formal analysis of the reliability of p2p communication sys-
tems and techniques to prevent dropped sessions. Moreover,
since media sessions such as voice and video have a tight
playout requirement, the network latency of a media ses-
sion involving a relay peer should satisfy these tight require-
ments. Further, the relaying of a media session may interfere
with other user applications and impair their performance.
A system designer must either provide incentives for users
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to run relay peers or design techniques that minimize the
interference of relayed session with other user applications.
In this paper, we present a framework to analyze the re-

liability of peer-to-peer communication systems (Section 3).
We then devise a simple analytical model that predicts the
smallest number of relays needed to achieve the desired reli-
ability for relayed media sessions (Section 4.1) and evaluate
it on exponential, pareto, and Skype node lifetimes. For a
given node lifetime and call duration distribution, the model
allows determining the minimum number of relays so that
the percentage of successful relayed calls does not fall below
a desired threshold (e.g., 99.9%). Such an analysis can help
characterize the resources (relays) needed for improving the
reliability of relayed calls. We then devise two techniques to
prevent dropped sessions, selecting k relay peers at the be-
ginning of a call with no-replacement and with-replacement
and predict their reliability improvement using reliability
theory in Section 4.2 and 4.3. In Section 4.4, we analyze the
reliability improvement scheme used by Skype. Section 4.5
presents the experimental evaluation of the model and dis-
cussion.
In Section 5, we present a distributed technique to find

a relay peer in O(1) hop and compare the performance of
this technique to a relay selection scheme that has global
knowledge of all the relays in the p2p network. Instead
of designing incentives for users to allow relaying of media
sessions through their user agents, we aim to minimize the
interference of relayed session with the user applications.
To capture the impact of the relayed media sessions on the
user applications, we introduce the notion of user annoyance
(Section 5.2). We augment our distributed search technique
to select a relay that minimizes delay, user annoyance, or
both within a threshold. To the best of our knowledge, we
are the first to address the reliability issues in p2p communi-
cation systems, and to devise techniques for finding a relay
that optimizes the latency of a relayed call and user annoy-
ance. Our analysis and results are also applicable to media
translation and conferencing in p2p communication systems.

2. PROBLEM SETTING
We consider a peer-to-peer communication system that

has N participating nodes. A node is a machine with CPU,
memory and disk and is connected to the Internet through
a dialup, DSL, cable, fiber, or a wireless connection. Typ-
ically, a human user is associated with each node or a ma-
chine and runs a peer-to-peer communication application(s)
(also referred to as user agents) and other applications. The
p2p applications use any peer-to-peer protocol to form a
p2p network. There are two types of nodes in a peer-to-peer
communication network, peers and free-riders. In the liter-
ature, they are also referred to as super nodes and ordinary
nodes [9, 21] or peers and clients [12]. A peer fully par-
ticipates in the p2p network, collaborates with other peers
to discover the reachable network address of the callee user
agent, and can relay one or more media sessions. A free-rider
does not collaborate in the discovery of the callee user agent
and does not relay any media sessions. However, this col-
laboration is not always purposefully avoided. The presence
of restrictive NATs and firewalls may hinder the participa-
tion of a node in the overlay, thereby forcing it to act as
a free-rider. The need for relaying media sessions between
caller and callee user agents arises precisely due to this rea-
son. For ease of exposition, we refer to the caller and callee

user agent as caller and callee, relay peer as relay, and voice
session as a call. Unless stated otherwise, we refer to the
p2p communication application as a p2p application.

3. RELIABILITY OF A P2P COMMUNICA-
TION SYSTEM

Availability is the classical metric for modeling the relia-
bility of a communication system and is typically measured
by the number of nines after a decimal point. For exam-
ple, a “3 nines” (99.9%) reliability means that the system is
down only 0.1% of the time. In a p2p communication sys-
tem, availability implies the ability of the system to find the
network address of the callee, and also to find a relay for
establishing the relayed call. However, this notion does not
fully capture the reliability of relayed calls because in addi-
tion to relay search failure, calls can also fail due to relay
churn since there is no guarantee about the uptime of re-
lays. Thus, a more accurate metric to capture the reliability
of calls in a p2p communication is the number of successfully
completed calls.

Psucc = PssFnorelay + PssFnorelayPrsP (R > D) (1)

Equation (1) formalizes the notion of reliability or per-
centage of successful calls in a p2p communication system.
The term to the immediate left of plus sign is the probability
of successfully finding the network address of the callee user
agent, Pss, times the proportion of calls that do not need a
relay, Fnorelay. The term to the immediate right of plus sign
is the probability of successfully finding the relay, Prs, times
the proportion of calls that need a relay, Fnorelay, times the
probability that the residual lifetime of a relay, R, is greater
than the call duration distribution D. This equation indi-
cates that the proportion of successful calls can be increased
by enhancing the performance of lookup schemes using tech-
niques similar to [24,27], by designing schemes that establish
a media session between user agents in the presence of NATs
and firewalls without requiring a relay [15], and by improv-
ing the success rate of distributed relay search and relay
calls. We focus our attention on analyzing the reliability
of relayed calls and relay search since other areas have seen
related work [25].

4. MODELING RELIABILITY OF RELAYED
CALLS

We present a simple model to calculate the minimum num-
ber of relays per call, k so that the success rate of relayed
calls is above a desired reliability criteria such as 99.9%
(Section 4.1), analyze two reliability improvement schemes,
namely, no-replacement (Section 4.2) and with-replacement
(Section 4.3), and present an evaluation of the model and
reliability improvement schemes (Section 4.5). Our analysis
assume that the nodes that need a relay to establish a call
(ordinary nodes) can randomly select it from the set of all
relays, that relays are plenty, and the system has reached
stationarity. In Section 5.1, we discuss a distributed scheme
to find a relay.

4.1 Number of Relays
Let Xi be a random variable (r.v) that denotes the life-

time of relay i, FXi be its CDF, and Xi be independent and
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identically distributed (i.i.d). Let Ri be a random variable
that denotes the residual lifetime of relay i when it starts
relaying the call and D denote the distribution of call dura-
tion. When a relay fails, the call it is relaying is immediately
switched to a new relay j, having residual lifetime Rj . Since
the new relay is selected immediately when the old relay
fails, the residual lifetime of the relays used are also i.i.d.
For simplicity, we assume that calls are not dropped during
switch over to a new relay. Leonard et al. [20] note that
if the system has reached stationarity, the CDF of residual
lifetimes is given as:

FR(x) = P (Ri < x) =
1

E[Xi]

∫ x

0

(1− F (z))dz (2)

We are interested in determining the minimum relays per
call k, so that the number of successfully completed relayed
calls is above a desired criteria such as 99.9%, i.e.,

Desired reliability ≤ P (
k∑

i=1

Ri > D) (3)

Lemma 1. When X and D are exponentially distributed
with parameters λ and ν, the r.h.s of (3) has a closed form
solution:

P (
k∑

i=1

Ri > D) = 1− (
λ

λ+ ν
)k (4)

Proof:
For exponential distribution, (2) can be solved to obtain
FR(x) and its probability distribution function (pdf) fR(x),
which are 1 − e−λx and λe−λx, respectively. Using condi-
tioning:

P (D <
k∑

i=1

Ri) =

∫ ∞

0

F (D < m)× f(
k∑

i=1

Ri = m)dm

f(
k∑

i=1

Ri = m) is a k-fold convolution of exponential r.v’s

which have a gamma pdf.

=

∫ ∞

0

(1− eνm)× λe−λm(λm)k−1

(k − 1)!
dm

=

∫ ∞

0

λe−λm(λm)k−1

(k − 1)!
− λe−(λ+ν)m(λm)k−1

(k − 1)!
dm (5)

The left term of (5) is 1 since it is an integral of gamma

pdf. Multiple and divide the right term by (λ+ ν)k and

using Γ(n) =

∫ ∞

0

e−xxk−1dx = (k − 1)!

= 1− (
λ

λ+ ν
)k (6)

For arbitrary lifetime and call distribution, the r.h.s of (3)
is difficult to solve as convolution of k i.i.d random variables
is non-trivial. Instead, we use the following approximation
which replaces the sum of k r.v’s with their maximum.

Lemma 2. The sum of k i.i.d r.v’s Ri being greater than
another r.v D is greater than or equal to one minus the kth

exponentiation of the probability of R being less than D.

P (
k∑

i=1

Ri > D) ≥ 1− P (R < D)k (Ri are i.i.d) (7)

Proof:

P (
k∑

i=1

Ri < D) ≤ P (max(R1, . . . , Rk) < D)

P (maxRi < D) = P (R1 < D, . . . , Rk < D)

= P (R < D)k since Ri are i.i.d

P (
k∑

i=1

Ri > D) ≥ 1− P (R < D)k

Observe that if node lifetimes are exponentially distributed,
the equality holds in (7) holds and (4) is obtained. For non-
exponential node lifetimes, the kth exponentiation decreases
much faster than the sum and intuitively, the bound is loose
for large values of k. However, the relative error of the
bound depends on the lifetime and call duration distribu-
tions. Next, we examine the relative error of (7) for pareto
distribution since the measurement studies of Skype node
lifetimes suggest using heavy tailed distributions as an ap-
proximation [17] and pareto is the most natural choice for
such an approximation.

4.1.1 Pareto node lifetimes
The CDF of pareto lifetimes is F (x) = 1 − (xb )

−a, where
a is the shape parameter and b is the scale parameter. For
our analysis, we use the shifted pareto distribution F (x) =
1−(1+ x

b )
−a with mean b

a−1 [20], because without the shift,
a node is guaranteed to be up for b units of time. Clearly, the
mean of this distribution is only defined for a > 1 where as
variance is only defined for a > 2 which prevents the calcu-
lation of an an exact analytical formula for sum of k pareto
i.i.d r.v’s. Zaliapin et al. [32] describe methods for approxi-
mating the upper quantile (0.98), lower quantile (0.02), and
median of sum of k i.i.d r.v’s. Their results indicate that
although replacing the sum with the maximum can reason-
ably approximate the quantiles around median, such an ap-
proximation is poor for the lower and upper quantiles and
for large values of k (e.g., > 10). The CDF of residuals of
pareto lifetimes is F (x) = 1 − (1 + x

b )
1−a [20]. Although,

the approximation results by Zaliapin can be extended to
the sum of pareto residuals for arbitrary values of a, b, and
k, such an effort is beyond the scope of this paper. Further,
the utility of precise approximation may be limited due to
the difficulty in estimating the pareto parameters. Also, real
node lifetimes do not follow a strict pareto distribution and
incorporate effects such as diurnal variations [17,19]. There-
fore, to obtain a bound on the minimum number of relays
to achieve desired reliability, we approximate the sum of k
pareto residuals with their maximum, but note that in doing
so, it is necessary to get an estimate of the relative error of
such an approximation to determine its usefulness.

In Table 1, we show the simulated values of the sum of
two and four pareto residual Ri being less than exponentially
distributed call holding times D and the relative error of the
approximation (maximum of Ri being less than D) with re-
spect to the simulated values. The simulated results are an
average over 107 runs. The parameters a and b were chosen
so that the mean of the distribution was five and one hour,
respectively. The choice of mean uptime of five hours ap-
proximately reflects the median of the observed Skype node
lifetimes [17, 19], where as mean node lifetime of one hour
is for a relatively less stable system. The top two values
in the fourth column are zero because sum of four Ri was
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a=2,b=5 (mean lifetime=5hours) a=3,b=2 (mean lifetime=1hour)
k=2 k=4 k=2 k=4

call duration sim (%) rel-e (%) sim (%) rel-e (%) sim (%) rel-e (%) sim (%) rel-e (%)
2.5 0.0074 8.5755 0 0.00 0.1544 0.2171 0.0003 21.3205
5 0.0251 3.6121 0 0.00 0.5517 0.2131 0.0027 6.9055

10 0.0961 1.7193 8e-5 20.0925 1.8179 0.1980 0.0319 3.8110
20 0.3553 1.3791 0.0011 14.7570 5.2869 0.1456 0.2772 0.2958
30 0.7171 0.4476 0.0053 1.9231 9.0853 0.0737 0.8292 0.2894
40 1.1567 0.4465 0.0137 1.7594 12.867 0.0233 1.6608 0.2589
50 1.6537 0.4349 0.0265 1.1979 16.464 0.0061 2.7106 0.0885
60 2.1895 0.1096 0.0482 0.8299 19.836 0.0303 3.9368 0.0585

Table 1: Simulated values of P (
∑k=2

i=1 Ri < D) and P (
∑k=4

i=1 Ri < D) for pareto lifetimes are shown in the ‘sim’
column. The values indicate the percentage of dropped relay calls in 107 runs. The relative error of the
approximation P (R < D)k=2 and P (R < D)k=4 with respect to the simulated values is shown in the ‘rel-e’
column. Call duration is exponentially distributed.

never observed to be smaller than D (with mean of 2.5 and
5minutes) in 107 runs. For relayed calls, these values are
interpreted as observing no call failure in 107 runs. Observe
that the relative error is low (< 0.2%) when the value of
the simulated sum of Ri r.v’s being less than D is above
2% where as the relative error increases for simulated values
smaller than 2%. This result is consistent with [32] which
notes that using the maximum of k pareto r.v’s instead of
their sum is not a good approximation for lower quantiles
(< 0.02). However, note that although the relative error in-
creases as call holding times, D, decrease relative to node
lifetimes and the number of summands k increase, we are
only interested in the smallest value of k for which the call
success rate is just above the desired reliability such as 99.9%
and not an arbitrary large value of k. In general, the ap-
proximation can be applied to determine the smallest value
of k that meets the desired reliability criteria, as long as the
relative error remains low (e.g., < 1%).
Next, we present two schemes for preventing the failure of

relayed media sessions due to relay churn.

4.2 No-replacement Scheme
In the no-replacement scheme, k relays are selected at the

beginning of the call with one relay acting as primary and
k − 1 acting as backup. If the primary relay fails, the call
is switched to a backup relay. We assume that calls are not
dropped during switch over. A call fails when all k relays
fail. Let Ri be a random variable that denotes the residual
lifetime of the relay i when it is drafted as a relay and D
be a random variable that denotes call duration. We are
interested in the probability that at least one of the relay,
that were selected when call was established, is online before
the call completes:

P (max(R1, . . . , Rk) > D)

= 1−
∫ ∞

0

P (R < z)kP (D = z)dz (Ri are i.i.d) (8)

We solved (8) to determine the proportion of successful re-
lay calls using two or three relays when node lifetimes are ex-
ponentially distributed, and the corresponding expressions

are 1− 2ν
λ+ν +

ν
2λ+ν and ( 1

2λ+ν −
1

3λ+ν )
6λ2

λ+ν , respectively. For
pareto node lifetimes, we numerically solved (8) to obtain
the proportion of successful calls using two or three relays.
How many relays? A question can be asked, how many

  



 

Figure 1: Markov chain for a 2-relay with-
replacement scheme.

relays should be selected at the time of establishing the re-
layed calls in order to improve their reliability. As might be
expected, the proportional increase in the reliability dimin-
ishes with selecting more relays at the start of the call. For
example, when node lifetimes are exponentially distributed,
the MTTF of a 2-relay, 3-relay, and 4-relay schemes are 3

2λ ,
11
6λ , and

25
12λ , respectively. The proportional increase in the

MTTF is 50%, 22%, and 13%, respectively. Clearly, this is
a case of diminishing returns. Further, maintaining numer-
ous backup relays exclusively for every call when relays are
not plenty is likely to result in a poor performance from the
perspective of successful call establishment for relayed calls.
Moreover, nodes in a media session also incur the overhead
of sending keep-alive traffic to many relays.

4.3 With-replacement scheme
This scheme is similar to the no-replacement scheme in

that k relays are selected at the beginning of a call, and a
call is switched to a backup relay if the primary relay fails.
However, when a caller or callee detects that one of the k
relays has failed, it launches a search to replace the failed
relay. Suppose it takes µ time units to detect that a relay
has failed and find a new relay. If node lifetime and search
time are exponentially distributed, a Markov chain can be
used to evaluate the reliability of this scheme [11]. For a
single backup relay, the Markov chain is shown in Figure 1.
In the reliability literature, this scheme is referred to as 1-
out-of-2 active redundancy with constant failure rate λ and
constant repair rate µ [11]. This chain can be solved to
obtain MTTF, i.e., the time it spends in states (2) and (1),
when two and one relays are operational. The failure rate is
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the reciprocal of MTTF, i.e.,

1
λWR

= MTTF =
3λ+ µ
2λ2

(9)

The subscript WR denotes with-replacement. For λ <<
µ, this scheme approximately behaves like a one relay scheme
with constant failure rate λWR (Birolini [11, page 190]). Let
RWR be a random variable that denotes the reliability of
this scheme. Since its failure rate is constant, its CDF is
RWR(t) = e−λWR(t). When call duration is exponentially
distributed with parameter ν, the probability that a call
completes before the two relays fail and a search for the
replacement relay also fails is:

P (RWR > D) =
ν

ν + λWR
(10)

When the node failure rates are not constant, either non-
homogeneous poisson processes may be used to model the
reliability of this scheme or node lifetime can be split into
periods where failure rate is constant. However, the diffi-
culty in using such analysis lies in the fact that for heavy
tailed distributions, the shape parameter a is often not ac-
curately known. Therefore, we leave such analysis for future
work.

4.4 Reliability of Relayed Calls in Skype
We performed experiments to determine if the Skype ap-

plication employs a no-replacement or a with-replacement
scheme. We blocked direct traffic between two machines
running in our lab using NetPeeker [4] and then ran Skype
applications on them and established a call. Since the traffic
was blocked between the machines, the Skype applications
were forced to use a relay to exchange signaling and media
traffic. Using NetPeeker [4], we blocked the media traffic
between caller machine and the relay, which is similar to
emulating a relay failure. Within 2-4 seconds, the Skype
applications chose a new media relay. We then immediately
blocked traffic between this new relay and the caller Skype
application which resulted into the call getting disconnected.
The experiment shows that when a call is established that re-
quires a relay, the Skype application chooses a backup relay
at the start of the call. When both relays fail simultaneously,
the call is disconnected.
To determine if a Skype application searches for a new

relay when the primary relay fails and the call is shifted to
the backup relay, we gradually increased the time between
primary and backup relay failure from 30 s to two minutes.
Our experiments indicate, that a Skype application waits
for more than a minute before searching for a new relay.
Thus, it employs a ‘periodic-recovery’ scheme for replacing
a failed relay instead of a ‘reactive-recovery’ scheme. We pe-
riodically failed the primary relay every 90 s for a call lasting
15minutes and found that the Skype application was able
to find a backup relay and the call did not get disconnected.
All the experiments were performed during the first week

of December 2009 and more than 70 calls were established
over a period of seven days.

4.5 Evaluation and Discussion
We evaluate the analytical model for the number of re-

lays, and reliability improving techniques using simulations.
We wrote an event driven simulator in which nodes form an
overlay network using Chord. We use a relay selector which
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Figure 2: (Left) CCDF of the node lifetimes and
the pareto fit for Skype data set (right) percentage
of dropped calls through simulations on the Skype
data set and using a pareto model when only one
relay is used.

randomly selects a relay from the pool of online relays hav-
ing sufficient network capacity. The inter-arrival time be-
tween requests for relayed calls is exponentially distributed
and its mean is adjusted over the course of the simulation so
that the cumulative network load of relayed calls does not
exceed a target aggregate network utilization of the peers.
In the results presented in this section, the aggregate up-
link network utilization of all the peers never exceeded 40%.
Thus, in our simulations, the relayed calls only fail due to
relay failure and not due to the scarcity of relays. We run
the simulation for 10 days of simulated time and repeat the
experiments until 107 call attempts have been made. The
warm up period is excluded from the reported results.

We use three node lifetime data sets. The first two data
sets contain synthetically generated exponential and pareto
node uptime and downtime with a mean of 300 minutes. The
pareto parameters a and b were chosen as 2 and 5, respec-
tively. The third data set contains the uptime and downtime
of 4,000 Skype super nodes measured for 25 days [17]. The
uptime of Skype nodes was measured by sending a specially
crafted Skype message to these nodes every 30 minutes. We
randomly selected 1,740 nodes from this data set of 4,000
nodes because this is the maximum number of end nodes for
which all pair ping latency data is available [18]. We use
this data for designing a distributed relay search mechanism
that minimizes latency of the relayed calls in Section 5.3.

All 1,740 nodes can potentially provide the relay service.
The median and mean uptime of these 1,740 nodes was 256
and 711 minutes, respectively. The pareto parameters, a
and b, computed using the method of maximum likelihood
and Kolmogorov-Smirnov statistic, are 1.4916 and 8.9833,
respectively. Figure 2 (left) shows the CCDF of Skype node
lifetimes and the pareto fit indicated by a dashed straight
line. Towards the end of the tail, the measured lifetimes
exhibit a knee of the curve. This happens because the node
lifetimes do not strictly exhibit a pareto behavior and the
measurement is stopped after T time units. For the Skype
data set, Figure 2 (right) shows the percentage of dropped
calls when a call is assigned to one relay through simula-
tions and those predicted by the model P (R < D). The
relative error with respect to simulations was less than 15%.
Wang [31] suggested that there is an inherent inaccuracy
in computing the exact parameters of the node lifetime dis-
tribution when they are sampled every T time units. We
note that such a bias depends on the ratio of the mean node
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Figure 3: Number of relays for exponential (top)
pareto (middle) and Skype (bottom) node lifetime
data set to maintain call success rate of 99.9%. The
mean node lifetime for exponential and pareto dis-
tributions was 300minutes.

lifetime and the sampling interval: the higher the ratio, the
lesser the inaccuracy and vice versa. Nevertheless, we note
that when the real lifetime data is used for churn simula-
tions, such a bias will always be present.
A key consideration is to realistically set the upload and

download bandwidth of a relay peer since it cannot relay an
arbitrary number of calls. Dischinger et al. [14] have mea-
sured the upload and download bandwidth for a range of
broadband hosts and we set the relay bandwidths accord-
ing to their reported distribution. We assume that a relay
call needs an uplink and downlink bandwidth of 128 kb/s
(using the G.711 codec). Modern codecs such as SILK [7]
which has a bit-rate between 4-40 kb/s can bring down the
required bandwidth at a relay to 8-80. To simulate the effect
of network traffic belonging to other applications, we ran-
domly set the uplink network utilization of a node between
10-30% of its uplink capacity at the start of the simulation.
Depending on its spare capacity, a relay peer can relay more
than one call.
Figure 3 shows the number of relays for exponential, pareto,

and Skype node lifetimes for a range of exponentially dis-
tributed call holding times. Guha [17] showed that 95%
of Skype relayed calls last less than an hour. The approx-
imation from (7) is used to calculate the number of relays
when pareto distribution is used to model node lifetimes. For
pareto node lifetimes (second row in the figure) and call du-
ration of 60minutes, the relative error of the approximation
was less than 1%. The results from the simulation show that
for the Skype data set and for call durations of 60minutes or
less, three relays are sufficient to achieve a call success rate
of 99.9%. Observe that modeling the Skype node lifetimes as
exponential and pareto resulted in a minimum relay predic-
tion of three relays which matches the simulations. For call
duration of 30minutes, the pareto model under predicts the
number of relays. However, this is expected as Skype node
lifetimes do not exactly follow the pareto model (Figure 2).
Also, for the results shown, note that although only three
or four relays or less are needed to achieve call drop rate of
0.1% or less for call duration of 60minutes, the number can
be higher when node lifetimes are smaller. As an example,
when the node lifetimes are exponential with a mean of one
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Figure 4: Proportional of failed calls using simula-
tions and model for exponential (top), pareto (mid-
dle), and Skype (bottom) node lifetimes. The fig-
ures on the left and right are for a 2-relay and 3-relay
no-replacement scheme, respectively.
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Figure 5: Proportion of failed calls using simulations
and Markov model for 2-relay with-replacement
scheme for exponential (left), pareto (middle), and
Skype (right) node lifetimes.

hour, at least ten relays per call are needed to achieve a
success rate of 99.9% for mean call duration of 60 minutes.

Figure 4 shows the reliability of a 2-relay and 3-relay no-
replacement scheme for exponential, pareto, and Skype node
lifetime data sets computed using (8). As expected, there
is a good match between analytically computed (using (8))
and simulated call success rates for exponential and pareto
node lifetimes. For the Skype data set, the simulations show
that a 2-relay scheme achieves a 99.9% success rate for call
durations of 10 minutes or less where as for call duration
of 60 minutes, the success rate is 99.25%. For 2-relay no-
replacement scheme, using exponential and pareto node life-
times to model Skype node lifetimes results in over predict-
ing and under predicting the number of dropped calls by
approximately a factor of two, respectively.

Figure 5 shows the reliability of a 2-relay with-replacement
scheme for exponential, pareto, and Skype node lifetime
data sets. The time to detect if a relay has failed and con-
sequently to search a new relay is exponentially distributed
with a mean of 60 s. As expected, the Markov model accu-
rately predicts the call drop rate when node lifetimes are ex-
ponential. The results also indicate that the Markov model
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may be a reasonable approximation for pareto node life-
times. For Skype data set and for call duration of 60 min-
utes, this scheme achieves a call success rate of 99.65%, an
improvement of 0.3% over a 2-relay no-replacement scheme.
The improvement is small because node lifetimes have a
large mean (711 minutes). When node lifetimes have a small
mean, it may be necessary to incorporate a with-replacement
scheme to avoid dropped calls. Since Skype employs a 2-
relay with replacement scheme with a relay search time of
approximately 60 s, the results from our simulations indi-
cate that the drop rate of relayed calls is likely to be small.
However, Skype’s relay mechanism is not completely ran-
dom and is biased towards low latency and high bandwidth
relays. Such a bias may result in higher drop rates for re-
layed calls [16]. Nevertheless, an implication of the results is
that for Skype node lifetimes, simple schemes for reliability
improvement such as two relay no-replacement and with-
replacement give reasonable reliability performance thereby
obviating the need for a sophisticated reliability improve-
ment scheme.

4.5.1 Practical implications of these schemes
In a k-relay no-replacement scheme, both caller and callee

exchange information about k relays at the time of call es-
tablishment. After a call has been established, they must
periodically check the liveness of all k relays. The live-
ness period should be adjusted so that when the primary
relay fails, there is a high likelihood that the new relay to
be incorporated is alive. However, the reliability returns of
maintaining a large number of backup relays at the start of
the call are diminishing, especially under high churn. For
this reason, a with-replacement scheme is attractive. Such a
scheme can potentially start with 2 or 3 relays, and find a re-
placement for a failed relay. However, the caller and callee
must exchange information about the new relay in subse-
quent signaling messages. For a no-replacement scheme, no
such exchange is required.

4.5.2 Other reasons for call failure
Relay failure is not the only reason why relayed calls may

fail. Such calls can also fail during call switching. Also,
since nodes may use silence suppression, it may take more
time to correctly distinguish between silence periods and a
failed relay because the frequency of heart-beat messages is
likely to be lower than real-time voice or video packets. If
a search for a relay is launched at the time when all relays
fail, the caller and callee can perceive a silence gap in the
conversation. If the duration of the perceived gap is long,
the call participants may simply terminate the call.

5. RELAY SELECTION
In this section, we devise distributed techniques to find

a relay that address several practical issues. The first issue
is that the distributed relay search must find a relay in a
timely manner to minimize the call establishment time and
to quickly recover from relay churn. Also, the relaying of
media session can interfere with the user applications and
impair their performance. It is important to select relays in
a way that minimize this interference. Besides minimizing
interference, latency and increasing reliability are key ob-
jectives for relayed calls. Addressing all these factors is a
multi-objective optimization problem which is NP-hard.




 
 















Figure 6: Two-tiered overlay implementing a local-
random scheme for relay selection.

In Section 5.1, we devise a distributed relay selection tech-
nique that can find a relay in O(1) hops and compare its per-
formance to a scheme that randomly selects a relay from the
global pool of all relays. Section 5.2 introduces the notion of
user annoyance. In Section 5.3, we augment the distributed
relay selection scheme to devise heuristics for finding a relay
that, for a relayed call, minimizes user annoyance or latency
or both, and evaluate their performance.

5.1 Distributed Relay Selection
We devise a relay selection scheme where a node request-

ing a relay can find a relay in O(1) hop. As mentioned
earlier, quickly finding a relay is necessary to reduce call es-
tablishment time and to recover from relay churn. The key
idea to accomplish this goal is to construct a two tier peer-
to-peer network. All peers in the top tier provide routing
services and can also potentially provide relay services. The
peers form the top tier network using any structured or un-
structured p2p protocols. Each peer maintains a data struc-
ture called a routing table to maintain connectivity with
other peers in the overlay. Each entry in this table contains
the network address and round-trip time of a reachable peer
in the overlay. As part of keep-alive messages to check the
liveness of entries in its routing table, a peer also exchanges
information with its routing table entries on how many re-
lay calls they can support, their uptime and the time for last
user keyboard or mouse activity.

The nodes in the lower tier are connected to peer(s) in the
top tier that are close by in terms of network latency and
may need a relay peer for establishing a media session. A
node in need of a relay sends a request to its connected peer
which consults its routing table and returns to the request-
ing node a set of available relays. If none of the peers in
the routing table can fulfill the relay request, the peer for-
wards the request to a randomly selected peer in its routing
table, which in turn consults its routing table for available
relay peers. The number of forwarding hops is bounded by
a constant such as four. As an example, if on average 30%
of the nodes in a peer’s routing table are busy routing a
call, then the probability of not finding an available relay
after traversing four randomly selected hops is less than one
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Figure 7: Performance of local-random scheme vs.
global scheme as a function of system load (left
graph). Percentage of dropped calls when one re-
lays fails (right graph).

percent (0.81%).
If the number of relay requests are low and uniformly dis-

tributed across all peers, this scheme is likely to find a re-
lay in O(1) hops. We refer to this scheme as local-random
scheme because it selects a relay by leveraging the local over-
lay view of a peer. This scheme is in contrast to a global
random scheme, which has knowledge of all relays in the
system and randomly picks a relay from this global pool.
Figure 6 shows an illustration of this scheme.
We evaluate the performance of this scheme through sim-

ulations and use Chord [28] as the overlay protocol. Each
Chord peer maintains a randomized routing table [16] in-
stead of a deterministic table, i.e., for the interval [ID +
2i, ID+2i+1), it picks up any node with an ID in this inter-
val. This is so because Godfrey et al. [16] showed that the
randomized scheme for populating routing tables has a bet-
ter performance against churn. The Chord network is run
on 1,740 nodes that follow the Skype node lifetime distribu-
tion as discussed in Section 4.5. The requests for relaying
a media session arrive at any relay and are uniformly dis-
tributed across relays. Intuitively, the local-random scheme
may have poor performance when relay requests are concen-
trated on a few peers. However, this issue is easily addressed
if a peer unable to fulfill the relay request forwards it to a
randomly selected peer in its routing table.
The metric for evaluating the performance of this scheme

is its ability to find a relay compared to a scheme with global
knowledge of all relays for an increasing number of relay re-
quests. The inability to find a relay impacts the success rate
of relayed calls (equation (1)). The relay search is likely to
fail when the number of relay requests is close to or exceeds
the network capacity of the peers. If the percentage of re-
lay peers that are relaying calls is low, then local-random
scheme is likely to find a relay. However, this may not be
the case when the number of relay requests is close to the ca-
pacity of the system. Figure 7 plots the percentage of calls
that fail to find a single relay. For the results shown, the
local-random scheme did not forward the relay request to
any peers. The x-axis is the ratio of the applied load to the
total relay capacity of all relays. The figure shows that the
performance of local-random scheme is poor when there are
few relays that can relay the calls. However, it gives com-
parable performance in terms of percentage of dropped calls
due to relay failure even under heavy relay request load.

5.2 User Annoyance
A key difference between p2p file-sharing and communi-

cation systems is in their approach to free-riders. The tit-
for-tat mechanism in BitTorrent-like filesharing mechanisms
aims to minimize the impact of free-riders that are not will-
ing to share files or are behind restrictive NAT and firewalls.
Such nodes can only download files at a reduced rate [2].
Reducing rate may not be an option in p2p communication
networks because it can affect the quality of audio, video,
and conference calls. Thus, in contrast to a p2p file-sharing
system, a p2p communication system must provide accept-
able service to nodes behind restrictive NATs and firewalls.
This key requirement means that nodes with unrestricted
connectivity must relay calls for nodes with restrictive net-
work connectivity and the relayed calls may interfere with
user applications running on these altruistic peers. We refer
to such interference as ‘user annoyance’.

We focus on characterizing the user annoyance and aug-
menting the relay selection scheme to minimize user annoy-
ance. User annoyance for relayed calls can also be reduced
by providing incentives. However, in a system where pro-
portion of relayed calls is much smaller than the number
of available relays, it may be possible to avoid peers where
a relay call is likely to cause a high interference with the
user applications, and thus bypassing the issue of providing
incentives.

The question is how to measure user annoyance. Since
relay jobs are network centric and since it is difficult to ac-
curately estimate the perceivable impact of the relay jobs on
user applications, we use the spare network capacity to esti-
mate user annoyance. This simplistic measure may not ac-
curately measure user annoyance; however, it is more practi-
cal than the other approaches. The higher the spare network
capacity, the smaller the likelihood of annoyance of a user
whose machine is used as a relay. A peer can periodically
perform its uplink and downlink capacity measurements (say
every 30 minutes) and by determining the current network
usage, gauge its spare network capacity which it can then
advertise to peers in its routing table. We use this technique
in our PlanetLab implementation (Section 5.4).

5.2.1 Estimating Spare Network Capacity
Measuring user annoyance requires estimating of the ca-

pacity of the network link. Unlike CPU, memory, and disk,
it is non-trivial to estimate the network capacity. To an
extent, this depends on the type of network link. On point-
to-point dialup connections, the maximum link speed is typ-
ically determined by the speed of the modem. As DSL and
cable Internet penetrates homes and the use of WiFi routers
at home becomes common, a device no longer directly con-
nects to the ISP in a way similar to dialup; rather, a device
connects to a WiFi router which connects to the DSL or
cable modem, which in turn is connected to the ISP. Us-
ing the link speed of the connected WiFi link will highly
overestimate the machine-to-ISP link capacity.

We suggest three approaches for determining the machine-
to-ISP link capacity in the presence of intermediate devices
such as WiFi routers, and cable or DSL modems. The first
approach uses the fact that link capacity is agreed upon be-
tween ISP and customer when the latter purchases a broad-
band plan. The idea is to design protocols which allows ISP
to pass this link capacity to the cable or DSL modem which
in turn passes this information to downstream devices such
as WiFi routers or laptops. This idea can be implemented
as a DHCP option, for example. The problem with this
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Figure 8: The x-axis represents the ratio of bandwidth consumption of total number of calls in the system
to the total network capacity of all nodes. (a) 95th delay (ms) of completed calls (b) 5th percentile of spare
network capacity (c) percentage of failed calls due to relay churn (d)(e) median and 95th percentile of number
of jobs per relay (f) percentage of calls that fail to find a relay.

approach is that ISPs typically perform statistical multi-
plexing on multiple flows, and the instantaneous capacity
of the link may be less than the purchased capacity. Also,
this technique requires changing the already deployed ca-
ble/DSL modems and WiFi routers, which is a non-trivial
task. Nevertheless, it is a solution that does not require p2p
applications to perform any network capacity measurements.
In the second approach, a p2p application can perform mea-
surements to estimate the link capacity by sending a train of
packets to other peers in the p2p network using tools such as
LinkWidth [13] or Pathchar [5]. Third, an operating system
or the p2p application can keep track of the maximum data
rate seen on the link within a recent time window and use
it as an estimate of link capacity. However, this approach
heavily depends on the network usage of the machine. We
use the second approach in our PlanetLab implementation.

5.3 Heuristics
Besides minimizing user annoyance, it is necessary to min-

imize the delay of a relayed call and increase its reliability.
In essence, this is a multi-objective optimization problem.
We devise heuristics to optimize these metrics and evaluate
their performance.
In Section 5.1, we constructed a two tier overlay network

and peers in the top tier maintain information about the
round-trip time, spare network capacity, and uptime of the
nodes in their routing table. Peers can periodically exchange
this information, perhaps as part of keep-alive messages. A
node searching for a relay then sends a request to its con-
nected peer which applies the heuristics and returns a set of
candidate nodes.
Below, we discuss the heuristics for selecting a relay peer

from a candidate set returned by the local-random scheme.

• Random: Select a random node.

• NetMax: Select a node with the maximum spare net-

work capacity.

• MinDelay: Select a node that has the smallest RTT.

• Threshold: Select a node that does not add more than
200ms of delay on top of the direct network latency be-
tween caller and callee, and has maximum spare band-
width. If no candidate meets the criteria, randomly
select any.

Figure 8 shows results for these heuristics. The results
were obtained through simulations on a 1,740 Chord net-
work, with node lifetimes taken from the Skype data set as
described in Section 4.5. We assume that the network la-
tency between the clients and their connected peers is very
small (close to zero). This assumption is reasonable because
clients will likely connect to minimum latency peers to use
overlay services. The heuristics are evaluated according to
several metrics. The first metric is the 95th percentile of
the total delay of a relayed call minus the direct latency be-
tween session peers. The second metric is the median and
95th percentile of the number of jobs per relay. The third
metric is the 5th percentile of absolute spare capacity on re-
lay nodes. The fourth metric is the percentage of calls that
fail due to relay failure. The last metric is the percentage of
calls that cannot find a relay.

The results shows that MinDelay heuristic gives the best
delay performance (Figure 8(a)). NetMax heuristic ensures
that relays with large spare network capacity are preferred
over relays with small spare capacity and achieves the best
performance for user annoyance. However, this has a con-
sequence that more calls can be assigned to high capacity
nodes, making these calls more vulnerable to relay failure
(Figure 8(c)). The Threshold approach gives the best perfor-
mance in terms of minimizing latency and user annoyance.
The Threshold scheme has a slightly high call drop rate due
to failed relays but this can be improved by biasing relay se-
lection towards idle nodes, e.g., machines with no keyboard
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or mouse activity within a time period. All heuristics have
similar performance in terms of their ability to find a relay
under increasing load.
As mentioned in Section 5.2, spare network capacity is

a simplistic measure to estimate user annoyance. In addi-
tion to spare network capacity, machine idle time is a useful
measure for relay selection. The idea is to select a relay
with spare capacity that has been idle for sometime. The
use of idle time as a relay selection metric is motivated by
SETI@home project [6]. SETI@home runs compute jobs as
a screen saver on idle machines that are distributed around
the world. Using this approach in a p2p communication net-
work, peers participating in the top-level hierarchy inform
peers in their routing table how long they have been idle and
whether they are in the screen saver mode. A node in need
of a relay then selects a peer that meets the delay constraint,
has been idle, and has the maximum spare capacity.
Figure 7 showed that search for relays start to fail when

the requests for relay calls are close to or exceed the total
network capacity of the system. This is unacceptable for
an overlay provider like Skype. The only solution for the
overlay provider is to provision the p2p applications with
centralized media relay servers. When nodes establishing a
media session fail to find a relay peer, they send a request
to the media relay server to relay the media session. Such
a hybrid solution is necessary for a commercial p2p VoIP
provider, if it needs to guarantee call establishment when
there are not enough relays in the system.

5.4 PlanetLab Deployment
To examine the feasibility of relay selection schemes, we

have implemented the Random and Threshold scheme in our
OpenVoIP [10] system. OpenVoIP is a two-level hierarchi-
cal overlay network deployed on PlanetLab that uses the
Kademlia DHT [26]. We have successfully scaled the top-
level network to 1,000 peers that run on 500 PlanetLab ma-
chines. Each peer in the top-level network fully participates
in the overlay and can act as a relay peer using TURN pro-
tocol [22]. Further, each peer periodically performs uplink
and downlink TCP throughput measurements and shares
this information with its routing table nodes. Using TCP
throughput provides a conservative estimate of the link ca-
pacity than tools such as LinkWidth [13] or Pathchar [5]. In
addition to sharing its uplink and downlink capacity mea-
surements, a peer also shares its uptime with its routing
table nodes. We have integrated p2p functionality with an
open source SIP phone. This P2PSIP phone fully partici-
pates in the overlay if it is not behind a NAT or a firewall.
Otherwise, it participates as a client. When two P2PSIP
phones behind a restrictive NAT cannot establish a media
session directly, they use a peer in the top-level hierarchy to
relay the media session.
We have implemented the Random and Threshold scheme

for relay selection. Our implementation of the Threshold
scheme uses delay and spare network capacity metric. We
do not use a SETI@home like technique for determining
whether a machine is idle as the PlanetLab machines are
not user desktop machines. The results for the Threshold
scheme indicate that relay selection is biased towards nodes
with maximum spare network capacity and low latency. We
note that these relayed calls are real voice calls between two
SIP user agents and are not emulated.

6. RELATED WORK
There has been extensive research on constructing prox-

imity aware DHTs [25] and to minimize the impact of churn
on DHT routing [16]. Ren et al. [23] showed through mea-
surements that many relay peer selections in Skype are sub
optimal, waiting time to select a peer can be quite long, and
there are a large number of unnecessary probes. They de-
signed an autonomous system aware p2p protocol (ASAP),
which considers autonomous systems into peer relay selec-
tion. Their approach suffers from three limitations. First,
when using DHTs, the network address of all relay peers
within the same AS can get stored on a single node, cre-
ating a single point of failure. Second, their techniques do
not incorporate interference of a relay session with the user
applications. This is critical because users will not altru-
istically run a p2p application if it actively interferes with
their applications. Finally, they provide no guidance on how
many relay peers are needed to achieve desired reliability.
Leonard et al. [20] analyze node connectivity in DHTs for ex-
ponential and pareto residual lifetimes. However, our focus
is on charaterizing the reliability of relayed calls. Godfrey
et al. [16] analyzed the impact of churn on the DHT routing
performance and suggested techniques to minimize such im-
pact. Our relay selection techniques uses their random selec-
tion approach. However, it is imperative to explicitly devise
schemes to prevent dropped calls. Tan et al. [30] present
analysis to improve the reliability of DHT-based multicast
by improving its delivery ratio. Delivery ratio is not an ap-
propriate metric to for analyzing reliability in peer-to-peer
communication systems.

Connectivity issues due to NAT and firewalls also arise
in p2p file sharing networks such as Kazaa [21] and BitTor-
rent [1]. BitTorrent allows nodes behind restrictive NAT
and firewalls to download file chunks, albeit at a lower rate.
To improve the download rate, BitTorrent FAQ recommends
users to configure the ‘port forwarding’ feature of NATs [2].
Lowering rate is not an option in p2p communication net-
works because it can impact the quality of a call. Further, a
user of the p2p communication may find it difficult to con-
figure the NAT device and may abandon the p2p application
in favor of a configuration-less communication application.

7. CONCLUSION
We have formalized the notion of reliability in peer-to-

peer communication systems and designed a simple analyt-
ical model that predicts the reliability of relayed calls as
a function of node lifetime and call duration distributions.
Our analysis shows that for Skype node lifetimes and for call
durations of 60 minutes or less, at least 2-3 relays are needed
to achieve a 99.9% call success rate. We have presented
two techniques for relay selection, namely, no-replacement
and with-replacement, and used reliability theory to ana-
lyze them. We have observed that Skype follows a 2-relay
with-replacement scheme, and it uses periodic recovery to
replace a failed relay, and the search period is more than a
minute. Our results indicate that exponential distribution,
despite its limitations, is useful in analyzing the reliability
of relayed calls.

We also introduced the notion of user annoyance which
measures the interference of a p2p communication applica-
tion relaying a call with other applications running on a
machine. We have devised a distributed technique to find
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a relay in O(1) hop. We augment this technique to find a
relay that minimizes the latency of a relayed call and user
annoyance. Finally, we have explored the feasibility of our
relay selection schemes on a 1,000 node peer-to-peer commu-
nication system deployed on PlanetLab. In the future, we
will extend our reliability analysis to p2p audio and video
conferencing.
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ABSTRACT
There is an increasing demand to access voice or video group
conferences without the burden of a dedicated infrastruc-
ture, but at any place and in an ad hoc fashion. Corre-
sponding solutions require a lightweight, fully distributed
cooperation among parties that share and manage the con-
ference in an efficient, self-adaptive way. The technology
framework of P2PSIP can be seen as a promising starting
point to meet these objectives. In this paper, we make sev-
eral contributions towards such a distributed, virtualized
control layer based on P2PSIP that seamlessly scales and
adapts to the user needs. We propose a P2P-signaling pro-
tocol scheme for a distributed conference control with SIP,
that splits the semantic of Identifier and Locator of a SIP
conference URI in a standard-compliant manner. This pro-
tocol scheme serves as further basis for a virtualization in
RELOAD. We further design and evaluate a self-organizing
communication layer that provides load sharing and churn
resilience with proximity-awareness. Finally, we address key
aspects of security and trust, as well as compatibility for
conference unaware clients.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications—SIP ; C.2.4 [Dis-

tributed Systems]: Distributed applications—Conferenc-
ing
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1. INTRODUCTION
Voice and Video over IP (VVoIP) conference applications

follow a trend to become independent tools driven by end
users, since the capabilities at end systems (CPU, Memory)
and the connectivity to broadband Internet are increasing
continuously. They not only offer an alternative to tradi-
tional telephony, but liberate users from provider-bound in-
frastructure at common service charges. These changes are
even more visible in the mobile domain with its spread of in-
telligent smartphones, and a foreseeable decline of operator
control of end systems. In addition to traditional telecom-
munication services, VVoIP deployments open the realm to
richer and more flexible use cases such as ad-hoc multi-party
conversations of variable sizes.

Popular lightweight group communicators such as Skype
[1] are built from proprietary models and protocols, while
multiuser multimedia conferencing systems based on the Ses-
sion Initiation Protocol (SIP) standard [2] are mainly de-
ployed on dedicated server systems. Recent IETF activities,
though, emerge to a new, infrastructureless session man-
agement using P2PSIP overlays and a control layer that
converges to the form of REsource LOcation And Discov-
ery (RELOAD) [3]. Conferencing solutions built by SIP
and non-SIP means are still almost exclusively constructed
with the help of one central conference controller per session,
which — in a P2P setup — severely limits scalability and
reliability of the application. Distributed conference session
management has not yet been taken up by the P2PSIP com-
munity.

In this paper, we propose a virtual and distributed con-
ference management architecture and a protocol that oper-
ate in a P2P ad-hoc mode independent of infrastructure.
By separating the locator from the identifier of the confer-
ence controller, the focus [4] or conference Unified Resource
Identifier (URI), we show how the multi-party session man-
agement can be distributed among multiple peers. We in-
troduce a simple routing scheme that transparently guides
conference signaling through the focus cloud, but still re-
quires a globally routable physical focus instance for an ini-
tial conference contact. To overcome the dependence on
individual peers, we virtualize the focus addressing within
RELOAD. The conference URI, which commonly provides
global routability to a dedicated focus, is published on the
P2PSIP overlay network as a key to several end system de-
vices. Further on, the transparent routing is transfered to
operate on a proximity-aware overlay identifier space and
gives rise to a self-adaptive tuning of the mutual communi-
cation flows.
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The overall result of this work is a decentralized server-
less system for distributed conference management with SIP
coined DisCo. It solves the open problem of organizing con-
ferences in a spontaneous, scalable and robust way based
on the emerging standards of P2PSIP technologies. Eval-
uations reveal that the use of proximity-aware identifiers
in an adaptive routing lead to a seamless self-organization
with efficient neighborhood selection in our solution. These
mechanisms are also designed as base implementations for a
distributed media mixing which scales up to a large number
of participants, and remains reliable against node departure
or failures.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of background technologies and
related work on the subject, followed by a discussion of the
distributed conferencing problem and its requirements. Our
core distribution mechanisms for a SIP conference focus are
outlined and evaluated in Section 3. Section 4 is dedicated
to the conference virtualization in P2PSIP and its adoption
of the core distribution scheme; RELOAD usages and kinds
are defined here along with the self-organizing procedures,
authentication and trust aspects and a protocol evaluation.
Finally, Section 5 is dedicated to conclusions and an outlook.

2. DISTRIBUTED CONFERENCING: PROB-
LEM STATEMENT & RELATED WORK

2.1 Traditional Conferencing
Three models of multi-party communication have been

defined in the discussion process at the IETF. The loosely
coupled model does not provide a signaling relationship be-
tween conference participants. Membership is achieved by
joining multicast groups and control information are learned
out of band or from the application transport protocol (e.g.,
RTCP [5]). In a fully distributed model, each participant
somehow manages a signaling dialog to all other remote
participants. Finally, in the tightly coupled model signaling
relationships are established between participants and one
central point of control, that negotiates media parameters to
establish media sessions. In SIP, this central point of control
is called the focus of a conference [6]. It is identified and lo-
cated by a conference-specific SIP URI that must be globally
unique and routable. The first two models are not further
defined, leaving details and complexity to further specifica-
tions. In the tightly coupled approach, a conference-specific
URI will be obtained by querying a dedicated conferencing
server. This allocates and publishes a conference URI (e.g.,
sip:meeting@muppets.com) and instantiates its correspond-
ing focus . The focus then serves as interface towards SIP
user agents that are interested in joining the multimedia ses-
sion. In addition to media negotiations, a conference focus
may comprise presence and conference state [7] notification
services. The focus also enforces a predefined conference
policy (e.g., permitted participants) and controls the media
mixing components.

2.2 Peer-to-Peer SIP Overview
The P2PSIP working group is dedicated to provide a vir-

tualized communication infrastructure for IP-based session
services. It decided to rely on a structured peer-to-peer ap-
proach. Structured P2P systems are based on Distributed
Hash Table (DHT) algorithms that can provide resource lo-
cation and storage in an application layer overlay network.

The overlay routing and data storage efforts are equally dis-
tributed among the participating peers and scales up to a
very high number of joining nodes. The benefits of DHTs
originate form its performance properties of typically O(log(N))
routing hops on average, and for a requirement of O(log(N))
routing table entries per node, where N is the number of
overlay members. DHTs such as Chord, Pastry, CAN, and
Kademlia [8, 9, 10, 11] have proved for their distributed, ro-
bust and scalable characteristics and now experience a wider
deployment in various file sharing applications (e.g., BitTor-
rent [12]).

Proximity Aware Overlays.

Overlay network identifier are typically generated from
hash-functions (e.g., SHA1 in Chord) for maintaining a uni-
form flat address space. These IDs normally do not have
any relation to relative network positions of a nodes in the
underlay. Numerical neighbors in the overlay can be phys-
ically far apart. Improved structuring of P2P overlays [13,
14] therefore may account for proximity information. One
class of approaches is built from landmarks. To determine
the relative network position p of a node, the round-trip
times (RTT) are measured against a fixed set of well known
landmarks l0, l1, .., ln. These measurement results will be
ordered according to the landmark index with the result of
a landmark vector < l1, l2, .., l3 >. Thereafter, the entire
address space will be divide into equally sized regions. The
definition of a region depends on the DHT and its address
structure in use. The ring-type address space like in Chord
can be cut into equal slices; subtrees in Pastry can define a
region or an n-dimensional space in CAN. Each landmark
vector permutation produces exactly one related region. A
node then joins the overlay at a ’random’ point in the re-
gion, that belongs to its landmark vector permutation. A
node may then be assigned to a relative position according to
its overlay ID, since every node has constructed its ID using
the same calculations. A disadvantage of this ID construc-
tion is caused by an uneven population of the address space.
This may cause peers to become responsible for much larger
address ranges than others. Load-balancing algorithms can
handle this problem by relocating responsibilities for overlay
spaces to less loaded peers.

Other approaches construct mappings between overlay IDs
and position information that are stored in the overlay. As-
suming the relative position p for node-ID IDn, then p

� =
hash(IDn) is an overlay identifier, for position p of node n.
Node n will then be mapped with p

� into the overlay region,
stored on the node that is responsible for this address range.
The nodes n1 and n2 are close to each other if the difference
of |p1 − p2| is low, with p1 and p2 were retrieved by a lookup
operation on p1

� and p2
�.

P2PSIP approaches.

Traditional SIP-oriented service architectures depend on
proxy servers that assist in call routing, user location, NAT
and Firewall traversal, as well as additional functionalities.
This orientation on static infrastructure limits deployment
and motivates approaches to relocate the proxy roles into
a P2P overlay for SIP sessions. Peers query the overlay by
using a P2P signaling protocol, and may contact an address
of the desired user agent without further hindrance. Core
procedures for call establishment should still be achieved by
using standard SIP mechanisms. K. Singh et al. [15] and D.
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Bryan et al [16] presented two different approaches, using a
Chord overlay network for replacing the SIP client-server in-
frastructure. Both are using SIP messages within their P2P
signaling protocol which are routed throughout the overlay.
For example, sending REGISTER requests is mapped to the
meaning of a DHT join message. Note that the semantics of
these SIP messages are either changed or extended by new
extension-header fields. Fessi et al. [17] presented a hybrid
model, connecting a user agent to a dedicated SIP server,
and likewise to a P2P SIP overlay. In this way, the authors
gain the benefits of the traditional SIP of low signaling laten-
cies and a trustworthy instance for security considerations.
In the case of a SIP server failure, a user agent may regain
connectivity by the P2P SIP overlay. To provide backwards
compatibility, a CoSIP proxy server is proposed as gateway
from SIP to the P2P protocol.

The necessity for an P2PSIP storage and lookup service
overlay was adopted by the IETF. The P2PSIP working
group is now standardizing a signaling protocol for REsource
LOcation and Discovery (RELOAD) [3]. The intention is to
establish a P2P overlay network based on a improved Chord
DHT, providing a storage and resource location platform for
different kinds of data. It is firstly designed for a usage for
SIP [18], but can be extended for new kinds with similar re-
quirements. We use this flexibility to define a new Usage for
RELOAD for a virtual and distributed conference, mapping
contact data and positioning informations into the overlay.

2.3 Related Decentralized Approaches
Several approaches have already dealt with the problem

space of distributed conferences. S. Romano et al. [19] pre-
sented a framework that allows to receive information about
conferences from various distributed conference servers. There-
fore, they foresee signaling relations between multiple in-
stances of dedicated centralized conferencing servers. A user
agent can query its local conference server about multi-party
sessions running at remote XCON Servers. The local confer-
ence server then requests the remote server for the required
parameters to participate and passes them to the requesting
client. An approach for a P2P SIP conference construction
were developed by K. Tirasoontorn et al. [20]. The confer-
ence URI, created by a Conference Factory placed on a ded-
icated Server, will be announced in an P2P overlay network
including the required media and contact information to join
the conference. The user agent that stored the conference in-
formation in the overlay, is responsible to perform conference
operations. It remains as a single contact point to manage
the multi-party conversation. Y. Cho et al [21] presented a
distributed architecture for signaling and media mixing. In
this hierarchical approach, a dedicated primary focus server
schedules conference participation requests among a set of
regional focus servers. The latter are responsible to include
the new participants and grant their access to the provided
media data. The encoding effort thereby will be distributed
onto several devices providing large-scale multimedia con-
ferences.

2.4 Problems and Requirements for
Virtualized Distributed Conferences

The traditional way to manage a multi-party conference
is to create a central point of control. Thereby SIP correctly
identifies a conference as a single logical entity and maps its
identity to single point of control. The centrality of the lat-

ter is limited by scalability and stability, and conceptually
forms the main problem for any approach of distributing
a conference architecture [22]. This conference controller
in SIP is called focus and plays the role of an interface to
participants, serves as negotiator for media parameters, and
often provides conference state notification services. The fo-
cus is identified and located by a Globally unique Routable
User agent URI (GRUU). Each request of a callee will be
routed to the physical device behind this address. This re-
sults in a single point of failure problem, as the conference
breaks down with failures in this device or its connections.
In a P2P scenario, the reliability of the conference control-
ling node cannot be guaranteed and may cause a complete
failure of the conference on regular departure. Apart from
signaling, the chain of decoding, mixing and again encoding
of media data demands high computational effort. There-
fore, common solutions for multiuser voice and video con-
ferencing are placed at dedicated server systems. They are
capable to reliably serve a fixed amount of media streams at
limited numbers (video solutions are typically designed for
about 20 participants). Common end user systems are only
able to handle a fraction of this amount due to computing
efforts. Deployed P2P-streaming (e.g., Zattoo [23]) solutions
challenge the possibilities of using the end-user systems for
distributed media streaming or mixing in pure audio. Cur-
rently, many approaches apparently remain at a borderline
quality, but provisioning of reliable media streams will be
soon enabled by the continuous dissemination of high speed
Internet connections in home networks and the rising com-
putational power of consumer computer.

From this perspective, we follow the need to design a dis-
tributed conferencing scheme in a P2P fashion as a future
standard-based solution for fully distributed voice and video
conferences. Therefore we define a set of requirements to be
met by our distributed conferencing protocol DisCo:

• Ad-hoc conference creation Any user agent im-
plementing the conferencing scheme, must be able to
create a multi-party session at any time. The creation
must be independent from a server infrastructure.

• Splitting the central conference control The con-
ference focus must be divisible into several indepen-
dent end systems. The split of the focus must thereby
be transparently achieved with respect to standard-
compliant SIP implementations and should appear as
one single entity. The focus distribution should be
activated prior to a focus peer management resource
exhaustion. Any party should be enabled to discover
other potential focus peers within among active mem-
bers.

• Robustness against focus failure It must be pos-
sible to re-arrange (not to re-create) a conference, as
one or more controlling peers fail, and thus to increase
the reliability as compared with centralized solutions.

• Availability of a conference To provide accessibil-
ity to a distributed conference, it must be announced
on a stable platform. For this purpose, a well-defined
conference data structure must be stored redundant
in a P2P network, that allows to resolve a conference
URI, that points to several independent conference
managers as entry points.
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• Proximity aware participation The proposed con-
ference signaling topology should serve road map for
the transfered media data. The media processing peers
should be arranged. New participants should be able
to select the physically closest focus peers, to minimize
signaling and data transfer delays.

• Security and Privacy A distributed conference must
ensure that only authorized participants can attend
the conference. Also needs to be ensured that only
determined user can change and manage a conference
state.

• Backwards compatibility A virtualized and distributed
conference must be accessible by client implementa-
tions that do not support our DisCo Usage.

3. DISTRIBUTING A FOCUS WITH SIP

3.1 Protocol Scheme
The first step for designing a distributed conference is to

separate the central control of the focus at the SIP layer.
A conference URI refers per se to a dedicated focus. Our
Scalable Distributed CONference (SDCON) [24] approach
splits the meaning of the conference URI into identifier and
locater. This is achieved by introducing a source routing
approach, which transparently forwards data among confer-
ence controllers that share a common conference URI. The
focus service of a conference is distributed among several
participating user agents supporting the SDCON scheme.
This leads to two classes of focus. First, the primary focus,
which initially arranged and managed a multi-party confer-
ence. Second, the secondary focus, which is a participating
user agent requested by the primary focus to become part
of the distributed conference controllers. There is no func-
tional difference between primary and secondary focus. Par-
ticipants can have a signaling relation to either a primary or
secondary focus. Both provide the same conferencing opera-
tions and notification services based on the same predefined
policies. However, the conference URI is bound to the pri-
mary focus. We propose the virtualization of the conference
identifier in section 4. This allows to completely decouple
the conference URI from dedicated peers.

Conference initiation, control, and management is per-
formed by the participating user agents adapting to the size
of a dynamically growing conference. Therefore, SDCON de-
fines a focus discovery procedure, call delegation, and state
synchronization mechanisms. As the primary focus dele-
gates a call to a secondary focus, it also transfers the used
SIP Call-ID and session identifier. Using this information,
a secondary focus is able to seamlessly send a re-invitation
to the transfered user agent and negotiate new media pa-
rameters. To implement the source routing, the secondary
focus inserts a Record-Route header field carrying its Glob-
ally unique Routable User agent URI (GRUU). Further sig-
naling is thus routed to the secondary focus. An example of
the SIP re-invite request is shown below:

INVITE sip:elmo@sesamestreet.com SIP/2.0

Call-ID: 0818@141.22.26.55

CSeq: 1 INVITE

From: <sip:puppets.meet@conf.muppets.com>;tag=134652

To: <sip:elmo@sesamestreet.com>;tag=643684

...

Participant Potential Focus

SIPSIP

SI
P

SI
P

SIP

SIP

State Sync.

Call delegation

Focus 
discovery

Focus A Focus B

SIP

Figure 1: A distribute conference control scenario

Contact: <sip:puppets.meet@conf.muppets.com>;isfocus

Record-Route: <sip:kermit@sesamestreet.com>

...

The Record-Route header is usually added by SIP proxies
to force further requests in a SIP dialog to be routed via
these entities [2]. In the example above, the secondary focus
kermit adds its own SIP URI into the Record-Route header
and forces the re-invited user elmo to send subsequent SIP
requests via him. Those source-routed requests to secondary
focus peers are intercepted by them and processed. Only the
focus peers are aware of the distributed fashion of conference
control. Participants do not recognize the ID/Locator split,
thus, the compatibility to SIP standard compliant imple-
mentations is achieved.

Figure 1 shows the main functionalities supported by SD-
CON user agents. The focus peers maintain signaling re-
lations mainly by two message flows: the State synchro-
nization messages and the Call delegation request messages.
Call delegations occur when a focus is fully booked and needs
to refer additional calls to less loaded focus peers. This is re-
alized by sending standard SIP compliant REFER requests.
Plain calls that address the conference URI are routed to
the primary focus. Call delegation, thus, will mainly be
performed for secondary focus peers. Synchronization mes-
sages are sent on change of state in any single focus entity,
e.g., announcing the arrival of a new participant. These
messages have to reach every controller to keep a consistent
view on the conference. Synchronizations are sent within
SIP NOTIFY messages carrying an XML document defined
by the Event Package for Conference State [7], which is ex-
tended for multi-focus demands. The additional elements
include information about each focus capacities, list of the
participants that are connected to it, and shows the signal-
ing relation to other focus peers. The capacity information
is used to prevent a call delegation to an already busy fo-
cus. In the case that the synchronization process has not
been completed while a call delegation is performed, each
focus peer can use SIP 4xx response messages types [2] to
advertise its status as busy. Another function consists in the
ability to discover focuses capabilities among participating
peers [24]. The focus discovery procedure is initiated before
a focus reaches its threshold for serving new clients.
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Figure 2: Time to completion of an INVITE request

for a newly arriving peer

3.2 Evaluation
To validate the operation and test the scalability of SDCON

signaling, we implemented a prototype application and per-
formed experimental measurements. The prototype is based
on the NIST Jain SIP stack [25], which represents the ref-
erence implementation for Java. All measurements were
performed in emulation mode. A minimal SIP proxy im-
plementation was executed on a Pentium D 2*2.80 GHz 2
with 2 GB RAM. The emulated participants and conference
focus peers have been executed on an Intel(R) Xeon(R) CPU
16*2.33 GHz with 16 GB RAM. The capacity of a single fo-
cus was fixed to 10 conference members. Each measurement
result presents the average signaling delay of 50 independent
runs.

Figure 2 presents the average signaling delay to partic-
ipate a conference, i.e., sending SIP INVITE requests to-
wards the conference URI. It compares our fully distributed
conference management with a centralized [4] and hierarchi-
cal [21] approach. The later implements a recursive call
delegation starting from the primary focus along the fo-
cus servers. For small conferences, where all parties can
be served from a single focus, our results agree with delays
of a centralized approach. The redistribution of the focus at-
tachment in our scheme causes one additional REFER mes-
sage and thus slightly doubles the signaling times. Apart
from this delay enhancement, the distributed conferencing
admits almost constant delays, in contrast to the hierar-
chical scheme. The latter experiences increasing delays of
approximately linear scale with growing conference size.

The signaling delay for a third-party invitation is pre-
sented in Figure 3. In this scenario, each recently joined
conference member initiates a third-party request to its re-
lated conference focus peer by sending corresponding SIP
REFER messages. The measurements follow our previous
observations. Most third-party participations are handled
in a constant signaling delay around 45 ms. Delay peaks
reflect overloaded focus peers with a maximum of 10 confer-
ence members. On reaching more than 10 members, a focus
initiates the focus discovery procedure and delegates further
participation requests to the new capable focus peer.
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Figure 3: Third-party participation via REFER re-

quests

4. VIRTUALIZED CONFERENCE CONTROL
WITH P2PSIP

The aim of virtualizing the conference is to separate its
logical ID from any physical instance. The P2PSIP over-
lay RELOAD [3] facilitates a corresponding mapping and
lookup of currently available conference management peers.
By using P2PSIP with RELOAD we gain the benefits of
an open and extensible signaling protocol that provides so-
lutions for common problems in traditional SIP and P2P
systems.

RELOAD serves as a P2P service platform providing a
message transport protocol, data storage and lookup func-
tionalities, as well as connection establishment for different
types of applications. Since connectivity of many peers in
an overlay may be limited by NATs or firewalls, Interac-
tive Connectivity Establishment (ICE) [26] is supported for
NAT and firewall traversal. RELOAD also provides a se-
curity framework based on public/private-key certificates to
establish trust relations and message authentication.

Overlay messages are designed with a simple and lightweight
forwarding header reducing forwarding effort and increasing
the routing performance. A noteworthy feature of RELOAD
is that the overlay algorithm to be used is not fixed, but left
to the implementation. However, the current version of the
RELOAD draft foresees a deployment on an improved Chord
distributed hash table (DHT). To support different applica-
tions, RELOAD allows for the specification of new Usages.
A Usage defines the data structures (kinds) to be stored, the
corresponding data identifier (kind-ID), access control rules
to those resources and how the resources’ overlay IDs are to
be formed.

Our concept of a virtual and distributed conference con-
trol uses these RELOAD benefits to provide a reliable, flex-
ible and scalable conferencing service in a P2P fashion. We
define a RELOAD Usage for separating the conference URI
from any specific focus entity and map it to the set of partic-
ipants that act as a focus instance. The proposed RELOAD
data structure provides network positioning information to
enable a proximity based focus selection. Based on this
kind definition, our Distributed Conference Usage (DisCo)
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DisCo Resource
- Focus A; <l1, l2, l3, l4, l5, l6>
- Focus B; <l1, l2, l3, l4, l5, l6>

New 
Participant

DHT

Focus B

Lookup 
Conference URI

Media Stream

Focus A

Figure 4: Discovery of a secondary focus using proximity information

[27] allows for the ad hoc creation of multimedia confer-
ences without a dedicated server infrastructure. Conference
signaling is performed using the call delegation and synchro-
nization mechanisms as described in the previous section.

4.1 Distributing a Focus in RELOAD
DisCo defines a distributed SIP conferencing Usage that

publishes all available entry points to a conference in a P2P
fashion. The inter-focus SIP signaling is performed using
the SDCON protocol scheme presented in the previous sec-
tion. This keeps the conference state in sync and performs
load balancing whenever focus peers are reaching their ser-
vice threshold for hosting clients. The DisCo Usage allows
a SIP user agent to create a tightly coupled conference in
P2P fashion, without assistance of a dedicated conference
server. Figure 5 displays the procedure of how to register a
distributed conference in a RELOAD instance. The creat-
ing peer (CP) of a conference generates the desired confer-
ence URI (Conf-ID) and first probes whether this address is
available. This is performed by using the RELOAD StatReq
message which is routed to the storing peer (SP) responsible
for the overlay ID. Overlay storage is organized according to
keys obtained by hashing the conference URIs. The corre-
sponding StatAns messages contains all meta data about the
RELOAD resources already stored at this resource-id. If no
other DisCo or SIP registrations for the selected Conf-ID
exist, CP can proceed by querying the enrollment server of
this RELOAD instance to obtain a new certificate created
for the conference URI. Using this security certificate, CP
then creates a DisCo kind data structure that comprises tu-
ples of two types of information. At first the address where
a joining peer can contact the CP to join the conference,
at second a coordinate vector that encodes the relative po-
sition of the CP within the underlying network. Using the
RELOAD Store operation, CP registers the conference in
the overlay.

The distributed conference registration will be treated as a
RELOAD resource of Kind DisCo maintained by the storing
peer. The RELOAD overlay itself acts as a registrar and es-
tablishes direct transport connections traversing NATs and

CP probes 
availability
of the desired 
Conf ID

Conf ID available:
CP registers itself
as first focus for the
conference at SP

The 
registration
of the Conf ID
requires a new
certificate

StatReq Kinds:DisCo,SIP

StatAns

Certificate Request

New Certificate

Store AoR:Conf ID Kind: DisCo

StatAns

Figure 5: Creation of a distributed conference

firewalls.
DisCo-enabled peers intending to participate in the con-

ference need to look up the hash of the conference URI as
displayed in figure 4. They retrieve the DisCo conference re-
sources, i.e., a RELOAD dictionary data structure in which
each single dictionary entry points to a distributed confer-
ence focus. In a RELOAD dictionary data model, each value
stored is indexed by a key. Using this index scheme, a focus
peer can explicitly update its own contact and coordinates
information maintaining its own overlay ID as dictionary
key. The contact information of the conference focus can be
of two different types, an Address-of-Record or a RELOAD
overlay ID. In the first case, if the retrieved Address-of-
Record (AOR) is a GRUU, the participating peer simply
establishes a regular SIP session by sending a SIP INVITE
request towards the announced contact. Otherwise the re-
ceived AOR is registered with the standard SIP Usage for
RELOAD and must be resolved following the SIP Usage pro-
tocol. If the retrieved contact is a RELOAD overlay ID, a
participating peer needs to perform a RELOAD appattach
request to establish a direct connection to the remote over-
lay peer. This request will be routed along the overlay with
ICE parameters and defines the desired application protocol
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enum {sip_focus_uri (1), sip_focus_node_id (2)

} SipDistConfRegistrationtType;

struct {

opaque coordinate<0..2^16-1>

select (SipDistConfRegistration.type) {

case sip_focus_uri:

opaque uri<0..2^16-1>

case sip_focus_node_id:

Destination destination_list<0..2^16-1>

}

} SipDistConfRegistrationData

struct {

SipDistConfRegistrationType type;

uint16 length;

SipDistConfRegistrationData data;

} SipDistConfRegistration

Figure 6: Proposed RELOAD data structure for a

distributed conferencing kind

as SIP. After the appattach request has succeeded, an ordi-
nary SIP session will be build upon the newly created trans-
port connection. A new conference member can advertise
its focus ability by adding an allow event to the multi-focus
conference state event package in the INVITE request.

Each contact in the data structure is complemented by
coordinate values that indicate the relative position of the
peer within the underlying network. Based on this informa-
tion, a joining peer may choose the focus from the dictionary
entries that is closest according to the proximity selection
mechanism explained in the following section.

After a DisCo-enabled peer has established a SIP session
by sending an INVITE, it is free to decide on advertising its
own capacities. To do so, it registers as a potential focus to
the conference storing its contact and network positioning
information within the same DisCo resource. Focus func-
tions will be activated either by a new joining peer that
chooses this potential focus as (nearest) entry point, or by
the focus discovery procedure explained in section 3. As a
potential focus is requested by a user agent to participate via
SIP signaling, it first accepts the call and establishes the re-
quested media sessions to this client. Afterwards, the active
focus will advertise its new status to all other active peers
managing the conference. It subscribes its related focus to
the extendedconference event package while transmitting its
focus capacities and contact and media information of the
new participants. The request focus will interpret this mes-
sage as indication for a new user agent acting in the role of a
focus and notifies all remote conference controller about this
change of state. It further responds with a SIP SUBSCRIBE

request to the new focus, transmitting the conference state
XML document. This finishes the focus acceptance and the
potential focus is a known active focus. All focus peers take
the same authorities and responsibilities to manage the dis-
tributed conference as the initial focus.

The definition of the distributed conference registration
kind is shown in figure 6. Every focus peer is allowed to store
or update mapping bindings using its node-id as the dictio-
nary key. The mappings stored can be of two varieties corre-
sponding to the types allowed in the SIP-REGISTRATION:
The first type sip focus uri contains the Address-of-Record
of a focus peer and the second sip focus node id returns

By passing the
conference 
certificate JP is
enabled to write 
the data structure

AppAttach 
establishes 
a transport 
connection

JP looks up
the Conf!ID
using Fetch
Request

By storing JP's AoR 
in the data structre, 
it registers itself as 
new focus peer

Fetch Conf!ID Kind:DisCo

FetchAns Node!ID:FP

AppAttach app:5060
AppAttach app:5060

ICE Checks

INVITE sip:focus

INFO Body: Conference Certificate

ACK
200 OK

Store AoR: JP Kind: DisCo
StoreAns

Figure 7: Joining a distributed conference and ad-

vertising focus abilities

the a RELOAD destination list containing overlay node-IDs.
The destination list feature in RELOAD is used, to enable a
requesting peer to perform a recursive overlay source rout-
ing. We define for the DisCo Usage, that the accompanying
coordinates value belongs to the final target of the destina-
tion list. If storing an AoR, the related coordinates value
must define the relative position of the AoR location. The
coordinates value is stored as an opaque string containing
the relative network defining a landmark vector. A land-
mark vector represents a set of Round-Trip-Times (RTT)
measurements against well-known landmarks. A more de-
tailed explanation follows in the next section. We use is ex-
plicit coordinate value, because it can not be assumed that
used overlay algorithm in an RELOAD P2PSIP instance
supports proximity awareness. The proposed Chord over-
lay in the RELOAD base definition for example, does not
support proximity information.

4.2 Self Organization with Proximity-aware
Load Sharing

The DisCo conference construction is performed using rel-
ative network position information. Each joining participant
chooses its closest focus, and every new peer managing parts
of the conference establishes an SDCON relation to its near-
est active focus node. A benefit of this proximity peer selec-
tion arises from an optimized mesh build-up causing short
signaling paths by default. The single steps to joining a
virtual and distributed conference are the following as dis-
played in figure 7:

1. Determining coordinates: Before a peer joins the multi-
party conversation, it determines RTTs against a set of
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stable Internet hosts l1, l2, .., ln serving as landmarks.
The measurement results are ordered along a landmark
index that is equal for all parties and focus peers. Or-
dered in this manner, the measurement results in mil-
liseconds comma-separated define our landmark vector
representing a peers relation network position in an
n-dimensional Cartesian space with n is the number
of landmarks (e.g. < 311, 87, 42, 137, 228, 75 , .., 55 >).
We thereby follow the landmarking approach from Rat-
nasamy et al. for proximity-aware server selection [13]
without the explicit binning of peers whose landmark
vectors equal each other. It just serves as am abstract
descriptor for a peer’s relative position in the network
and is not used to identify a peer.

2. DisCo data structure retrieval: To obtain alle avail-
able focus peers for a conference the joining peer (JP)
achieves a RELOAD fetch request that is routed to the
storing peer thats own the resource-id for the hashed
Conference URI. It thereby in the sets the kind value
in the request to the DisCo kind-id querying for the
complete conference dictionary.

3. Calculating the closest entry point: On successful re-
ceived the conference information, a peer compares
each retrieved coordinates value representing the focus
landmark vector with its own. Our approach subtracts
the each focus landmark vector with that of the joining
peer and builds the scalar product over the result of a
substation. The joining peer then chooses that focus
with the smallest scalar product result as entry point
to the conference.

4. Connecting to a Focus: Using contact information de-
posited dictionary entry, JP establishes a transport
connection to the selected focus peer (FP) using the
RELOAD’s AppAttach operation. It is routed through-
out the overlay to FP and indicates a desired SIP sig-
naling connection by setting the application field to
5060. After FP finalized the AppAttach progress JP
and FP perform ICE checks [26] to detect whether any
of them if located behind a NAT and additional TURN
server are needed for application session establishment.

5. SIP Session establishment: The established transport
connection is then used to enter the ordinary SIP sig-
naling progress thus JP can successfully join the mul-
tiparty conversation. Additionally, JP can pass JP
writing permission to the DisCo registration by trans-
mitting the shared certificate within a SIP INFO mes-
sage.

6. Advertising focus abilities: JP can optionally adver-
tise itself as available focus peer for the distributed
conference, by mapping its contact to the existing DisCo
data structure at the storing peer.

The joining peer hereby adds its own landmark vector
coordinates as an URI parameter coord base64 encoded to
its URI in the SIP contact header. The coord-parameter
is used by the requested focus in case of overloading. It
then performs the call delegation mechanism and selects a
focus candidate according to the new participants network
positioning. If the selected focus is capable to serve new
clients it accepts the SIP call. Further, it published the

new membership by achieving the SDCON synchronization
mechanism explained in section 3, to keep the conference
state consistent.

Because every new member chooses its closest focus, the
conference will be constructed unified distributed among all
controlling peers, like shown in figure 4. Following this reg-
ular construction, participants and focus peers will arrange
themselves to an unbalanced distribution tree. To reduce
the diameter of this tree, hence minimizing the delay times
between the nodes, it is possible to establish cross connec-
tions. This kind of mesh optimization are highly dependent
on the types of used media streams, and is therefore out of
scope of this paper.

4.3 Resilience to Focus Failures
A problem in traditional tightly coupled conferences, orig-

inates from the focus that acts as single point of failure. If
it breaks down, all signaling and media sessions are discon-
nected. In our scenario, the distributed structure of the
conference prevents the breakdown of the entire multimedia
session as one focus peer fails. As a focus fails, it can be
substituted by potential or active focus peers re-collecting
lost conference participants.

We use this redundancy to build a recovery mechanism.
As a DisCo-enabled participant notices that its related fo-
cus does not any more deliver signaling or media packets,
it will connect to one of the remaining managers of the
conference. It therefore achieves the same DisCo protocol
steps explained previews, however, without redetermining
its landmark vector.

Conference participants not supporting the DisCo Usage
will get a different treatment in case of focus error. A con-
ference focus selects one or more active focus peers, that
will serve as backup focus. The selection is done according
to the relative network coordinates by choosing the closest
peers. The backup selection will be announced to all other
conference controller within the conference state XML doc-
ument. In the case of node appearance, the detecting focus
firstly notifies the conference managing peers about failure
to share knowledge. It then immediately refers all discon-
nected participants to the backup focus peers. In this way,
participants related to the malfunctioning conference con-
troller just notice a temporally connection loss and recover
via a re-invitation mechanism. Whenever the malicious fo-
cus returns, it re-joins the conference normally. Otherwise,
the dictionary entry of this peer will be deleted by the re-
source owner, after the lifetime value expires in RELOAD.

New participating peers who try to connect to a disap-
peared focus will receive a 404 Not Found response mes-
sage, according to the RELOAD protocol. These peers then
try to connect to the focus, whose landmark coordinates are
the second closest to their own. The stored DisCo data is
protected against failure of the resource owner, by the pro-
vided replication algorithms in the used DHT running the
RELOAD P2P SIP instance.

4.4 Security & Trust Aspects
The DisCo Usage defines a set of security and trust as-

pects in a P2P environment. A common problem in dis-
tributed P2P systems arises from the fact, that connections
will be established, even though the corresponding partners
do not necessarily trust each other. In our conference sce-
nario, we assume that participating peers can authenticate
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each other in person based on the received voice and video
transmissions. Built on this, we introduce a graduated trust
delegation system for distributed conferences.

RELOAD provides a set of access control policies, defining
whether a peer is allowed to perform a certain store request
or not. For our distributed conferencing resource, we use
the defined user-match access policy. Each stored data can
be written if the request is signed with a key associated with
a certificate whose hashed user name equals the resource’s
overlay ID. Since our DisCo resource needs to be updated
by multiple peers, using the user-node-match policy used by
the SIP Usage for RELOAD is not an option. We use our
trust delegation mechanism, allowing peers to obtain write
access to the shared resource. To receive write permissions
for the distributed conference overlay resource, the private
key for the certificate of the stored resource will be trans-
mitted within a SIP INFO message to allowed focus peers.
Using this key, a user is able to authenticate itself against
the owner of the conference data structure, and can register
as potential focus.

On conference creation, the initiating peer can setup the
distributed conference policy for a layered authentication.
In an open access model, every peer interested to join the
conference can do so by just inviting one of the multi-party
focus peers. No authentication is required for participat-
ing. An open access model may be suitable for a group
conversation of public interest, for example a political de-
bate. Because in this open model, an attacker could easily
become a focus peer and send malicious packages, we define
an open access focus authenticate model. The conference
initiator can specify that peers wanting to become a focus
need to authenticate themselves using any of the standard
authentication mechanisms allowed in SIP. The correspond-
ing credentials need to be transmitted to those peers by
a non-SIP, non-overlay mechanism. As a new participant
invites the conference, it uses ordinary SIP authorization.
After validation of the presented credentials the called focus
is then allowed to pass the conference’s certificate key to the
recently joined conference member. To create a closed multi-
media conference, it is also possible to set an authentication
scheme required for participation in a closed access model.
Thus, only users who present valid authorization credentials
are allowed to join. By combining the closed access and the
focus authenticate model, our layered access model defines
different permissions for clients joining the conference only
and peers that are allowed to become focus, dependent on
their credentials. Focus peers obtain the information needed
to validate participants’ credentials within the conference
XML document (e.g. a conference password or certificate),
to be able to authorize new members. The used access model
will be stored in the conference state XML extension, thus
every controlling peer is aware of the used access model.

Providing these access layers, a user initiating a conference
is able to setup its desired privacy policies for the multi-party
conversation. It can be suggested, that in closed conferences
an unknown conference member will be detected by the par-
ticipating users, for example by not recognizing its voice or
outwards appearance in video. Those unsuspected users can
be excluded by a conference focus peer by disconnecting sig-
naling and media sessions.

4.5 Supporting Conference-unaware Parties
Participation a virtual and distributed conference is not

be exclusive for those peers that implemented our RELOAD
Usage definition. Standard compliant participation is trans-
parently provided to peers unaware of the distributed con-
ference construction. This section describes the backward
compatibility to user applications implementing the SIP Us-
age [18] for RELOAD, and describes how connectivity to
SIP-only user agents is achieved.

The SIP Usage for RELOAD defines a kind data structure
for storing an AoR for a SIP user agent. It likewise uses the
destination list feature in RELOAD and provides the stor-
age of GRUUs as contact addresses for SIP session establish-
ment. To provide backward compatibility to RELOAD peers
only implementing the SIP Usage, a conference initiator can
decide to register the conference URI as SIP-Registration
kind parallel to the DisCo kind. The SIP Usage registration
is then performed using the destination list feature, register-
ing the amount of active and potential focus peers as entries
in the destination list. Peers attending to join requesting re-
solving conference URI using SIP-Registration kind-ID, re-
trieve the destination list containing the conference entry
points. The connection to a conference focus then will be
achieved in accordance with the SIP Usage. Those peers will
not be aware of the distributed structure of the multi-party
conversation.

Because the SIP usage for RELOAD access model is user-
node-match, other focus peers will not be able to update
the stored data. The conference initiator must update the
SIP-Registration kind continuously, on appearance or disap-
pearance of focus peers. Hence, it depends to the conference
initiator to keep the destination list up to date and valid.
To achieve maximal accessibility in the case that the lat-
ter permanently leaves the multi-party conversation, it has
to set the lifetime value on a high level. By just using the
SIP-registration kind, conference joins can not be performed
under proximity selection. However, a conference created
with DisCo can provide access to the multi-party, although
a client does not implement our usage.

The participation for ordinary SIP user agents is per-
formed by another mechanism. Since a virtualized confer-
ence URI is stored in a RELOAD overlay, a standard SIP
user agent can not resolve it with traditional mechanisms
and a direct participation is not possible. Instead, partic-
ipation will be achieved through third-party initiated from
within the conference. An established multi-party member
requests its related focus to invite the new attendees sending
SIP REFER requests. By using the protocol mechanisms for
transparent focus distribution explained in section 3, the re-
quested conference manager invites the new attendee send-
ing a SIP INVITE request.

4.6 Evaluation
To verify our concept of the proximity-aware focus se-

lection, we conducted experimental measurements based on
the PlanetLab platform [28]. PlanetLab nodes are globally
distributed and thus allows for geographically placement of
conference peers. Although this real-world experimental fa-
cility is biased in the sense that significant nodes are lo-
cated at well-connected university networks, it gives a good
approximation of delay characteristics for this part of the
Internet.
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CAIDA Monitor Location

mnl-ph.ark.caida.org
nrt-jp.ark.caida.org ASIA
she-cn.ark.caida.org
dub-ie.ark.caida.org
lej-de.ark.caida.org Europe
her-gr.ark.caida.org
pna-es.ark.caida.org
sea-us.ark.caida.org
mty-mx.ark.caida.org
amw-us.ark.caida.org North America
yto-ca.ark.caida.org
wbu-us.ark.caida.org
hlz-nz.ark.caida.org Oceania
gig-br.ark.caida.org South America
scl-cl.ark.caida.org

Table 1: Selected landmark nodes chosen from

CAIDA measurement monitors

Experimental Setup

The experiment considers small and medium size confer-
ences. The principle setup is the following: We deployed
DisCo on a varying number of peers chosen from a prede-
fined subset of all PlanetLab nodes. These peers create focus
instances and corresponding relationships based on the land-
marking approach described in section 4.2. Relative network
positions are determined using 15 landmark nodes outside
of the PlanetLab system. The experiment is conducted until
measurements are converged.

100 nodes are selected from the overall PlanetLab nodes
to create the list of potential DisCo peers. To mitigate local
system disturbances, we included only hosts that exhibit an
appropriate system load. The selected nodes are located
in Asia, Europe, South and North America to emulate a
globally distributed conference and observe long range delay
effects.

In general, the quality of landmark approaches depends on
an appropriate number of landmark nodes and their place-
ment. However, there is no common sense on the num-
ber of dimensions to create a coordinate system [29]. They
may range typically of 7 to 9 [30], but also depend on the
dataset. In order to evaluate proximity-awareness for an al-
most generic scenario with respect to the selected DisCo
peer, i.e., without any dedicated landmark optimization,
15 landmarks are chosen from the set of CAIDA [31] mon-
itor points (cf. Table 1). This has two advantages: First,
CAIDA monitors are globally reachable and not located be-
hind NATs or firewalls, which is important and a realistic de-
ployment assumption for landmark nodes. Second, they are
globally distributed covering different geographic locations.
The landmark selection process omits suspicious nodes that
reply unusually on ICMP echos.

Performance Metrics

We analyze the quality of our proximity-aware self organi-
zation of (focus) peers based on the following metrics:

Degree corresponds to the number of neighbors. Nodes
that have a degree of 1 only participate in the con-
ference without replicate data. Nodes with a larger
degree operate as focus. This metric, thus, reflects
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Figure 8: Degree distribution

implicitly the load on a peer.

Delay Stretch measures the ratio of the average delay caused
by the overlay and the average delay using native dis-
tribution. It follows the idea of the relative average
delay (RAD) defined by Castro et al. [32]. This met-
ric represents the relative delay penalty.

Foci Ratio describes the ratio of overlay peers that attain
the role of a focus. This metric quantifies the distri-
bution of conference management load among peers.

The results are compared with a complete random selec-
tion of focus nodes, and an optimal solution of the focus and
peer topology.

Results

The degree distribution of inter-peer relations was measured
and displayed in Figure 8. For all schemes, the majority of
nodes are single-attached and thus pure leafe nodes. Fo-
cus nodes that exhibit a degree ≥ 2 dominantly admit low
degrees and thus suffer little load of packet replication and
forwarding. More significantly and clearly visible from the
insert, the probability of higher degrees exponentially de-
creases leaving negligible weight to the occurrence of over-
loaded peers or unsuitable conferencing demands.

A more sensitive measure on detailed conference perfor-
mance is given by the delays imposed mutually related peer
neighborhoods on the overlay. Figure 9 compares the aver-
age delay stretch of our landmarking scheme with a random
neighbor selection and the optimal set-up. While a routing
via arbitrary conference neighbors in our global conference
evaluation may lead to alienating delay enhancements of 15
to 30 times, our landmarking scheme remains within favor-
able bounds around 2 to 3, which is very close to the opti-
mal solution. Most importantly, the delay stretch remains
constant with respect to the numbers of conferencing par-
ties and thus promotes arbitrary scalability of our proposed
adaptive self-organization scheme. It should be noted that
randomized neighbor selection leads to a linearly increasing
stretch.

Finally, we examine the relative portion of peers that at-
tain the role of a conference controller assuming the absence
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Figure 10: Ratio of overlay peers attaining the role

of a focus

of NATs and firewalls. As displayed in Figure 10, the relative
portions of focus peers is bound to about 50 %, independent
of the conference size, as well as the adaptation scheme in
use. Peers thus encounter a probability of 0.5 to be uti-
lized as conference supporters at a scale the remains fully
independent of conversational parties.

5. CONCLUSION AND OUTLOOK
In this paper, we presented a virtual and distributed con-

ference control solution, self-organizing and adapting to the
demands of a scalable, infrastructure-resilient multi-party
conversation. Presenting a protocol scheme that transpar-
ently splits a SIP conference focus onto multiple peers, an
address virtualization of the conference URI separates the
logical ID from any physical instance. We demonstrate how
this concept is implemented in a RELOAD DHT of P2PSIP,
providing independence from any server infrastructure. To
meet the requirements of a transient P2P environment, the
presented protocol schemes maintain operations for call dele-

gation, load balancing and state synchronization. To reduce
signaling delays, we proposed a method for routing with re-
spect to relative network position of peers and to enable a
proximity-aware focus selection.

The conducted experimental measurements revealed close
to optimal results for our presented concepts. We showed
that the signaling delay remains constant during an increas-
ing conference. Furthermore, our measurements on the Plan-
etLab platform displayed, that our proximity-aware focus
selection achieves a low delay stretch. Reducing the edge
degree per node and diameter of the arising tree-like mesh
topology, we expect to apply further optimizing algorithms
for future work. We propose to bring the concept of a virtu-
alized and distributed conference Usage into the IETF stan-
dardization process.
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ABSTRACT

In the last few years, there has been a good deal of ef-
fort put into the research and standardization of P2P-based
VoIP signaling, commonly called P2PSIP. However, there
has been one important issue which has not been dealt with
adequately, privacy. Specifically i) location privacy, and ii)
privacy of social interaction in terms of who is communicat-
ing with whom. In this paper, we present Pr

2-P2PSIP , a
Privacy-Preserving P2PSIP signaling protocol for VoIP and
IM. Our contribution is primarily a feasibility study tackling
the privacy issues inherent in P2PSIP. We leverage stan-
dard security protocols as well as concepts and experiences
learned from other anonymization networks such as Tor and
I2P where applicable. We present the design and on-going
implementation of Pr2-P2PSIP and provide a threat analy-
sis as well as an analysis of the overhead of adding privacy
to P2PSIP networks. Particularly we analyze cryptographic
overhead, signaling latency and reliability costs.

Categories and Subject Descriptors

C.2 [Network Architecture and Design]: Miscellaneous;
K.4.1 [ Public Policy Issues]: Privacy

General Terms

Privacy, anonymization, Peer-to-Peer(P2P), Session Initia-
tion Protocol (SIP)

Keywords

P2P signaling, P2PSIP, location privacy, social interaction
privacy, onion routing, reliability costs

1. INTRODUCTION

The Session Initiation Protocol (SIP) [30] is a protocol
standardized by the IETF for setting up multimedia ses-
sions, in particular Voice over IP (VoIP) sessions. It can
also be used for Instant Messaging (IM) [29]. There has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm 2010, 2-3 August, 2010 Munich, Germany
Copyright 2010 ACM ...$10.00.

been a lot of effort in research and standardization in the
last few years related to P2PSIP [6]. The concept behind
P2PSIP is that the location of a SIP User Agent (UA) (IP
address and port number) is published not to a SIP Regis-
trar, but in a Distributed Hash Table (DHT). This data is
stored at other peers with peer identifiers (IDs) uncorrelated
to the SIP UA. These peers, called replica nodes, reply to
queries from any other peer looking for the UA. This makes
the UA available for incoming VoIP phone calls and chat
messages. However, the SIP UA has no control over know-
ing which peers have asked for its current location. Curious
and malicious peers can perform a lookup for the SIP URI of
the UA regularly. The IP addresses of the UA could then be
mapped to geographic locations [1]. Using this information,
attackers could build location profiles of a user. Even worse,
attackers could “crawl” the P2PSIP network and harvest lo-
cation profiles of all participants. This issue has been left
out-of-scope in the IETF P2PSIP working group (WG) [2].
On the other hand, location privacy had been thought of
early in the GSM standardization process. Thus, it seems
to be necessary to consider this privacy issue in P2PSIP
networks as well.

Another privacy threat in P2PSIP is that replica peers
can observe that communication is established between two
SIP UAs and deduce knowledge about the social interaction
of the two users.

In this paper, we tackle the two privacy issues illustrated
above; the former, location privacy and the latter, social
interaction privacy, by developing a new protocol which we
call Privacy-Preserving P2PSIP (Pr2-P2PSIP). The rest of
this paper is organized as follows. In Section 2, we present
our on-going work on the design and implementation of Pr2-
P2PSIP. Section 3 provides an evaluation of Pr2-P2PSIP
in terms of threat analyses as well as an analysis of the
overhead of adding privacy to P2PSIP networks in terms
of cryptographic overhead, signaling latency and reliability
costs. Section 4 provides an overview of related work and
Section 5 concludes our findings in this paper.

2. DESIGN OF PR2-P2PSIP

In this section, we introduce Pr2-P2PSIP.

2.1 Model and Notation

First, we introduce the model and notation used in the
rest of the paper.

2.1.1 SIP UAs and Public Identities

The SIP UAs provide the means for users to perform their
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social interactions. They send chat messages and initiate
phone conversations on behalf of the users. Let N be the
set of UAs in a P2PSIP network and n = |N | the number
of UAs. In this paper, we use capital letters, e.g., A, B or
Ai, i ∈ {1, 2, ...n} to denote interchangeably (unless other-
wise explicitly mentioned) a user name, her SIP UA, or her
SIP URI.

Note that we use the term “UA” and “peer” interchange-
ably.

2.1.2 Authentication Server

Pr2-P2PSIP functions with a central authority, which is
an authentication server AS. The AS authenticates a user
A using a long-term preshared key, e.g., user password, or
a high entropy key stored in the (U)SIM card of the user’s
smart phone. After successful authentication, the AS pro-
vides the UA with a certificate that binds the user’s public
key +KA to her public identity A. The AS is indispensable
for Pr2-P2PSIP as it provides verifiable identities at the ap-
plication layer. This enables UAs to mutually authenticate
each other and establish secure channels for encryption and
integrity-protection at the application layer (SIP signaling
and multimedia streams). The AS provides verifiable iden-
tities at the overlay layers as well (Pr2-P2PSIP includes two
different overlays, explained in Section 2.1.3) in order to
prevent attacks on the overlays, e.g., Sybil and eclipse at-
tacks. Another attack that would be possible without a cen-
tral authority would be the so-called chosen-location attack
where malicious peers choose a convenient peer ID where
they could, eclipse (hide) other peers, or eclipse the con-
tent they would be responsible for. In the context of pri-
vacy, chosen-location attacks would allow malicious peers
to choose a strategically “good” position where they could
monitor the activities of certain other peers.

2.1.3 Storage and Forwarding Overlays

In addition to its public identity, a UA Ai has two pseu-
donyms fi and si which it uses for participating in two dif-
ferent overlays as sketched in Figure 1. si, i = 1, . . . , n is the
storage overlay. fi, i = 1, . . . , n is the forwarding overlay.

Storage.

Storage is the common service that DHT’s provide. The

Table 1: Notation

+Ke Public key of an entity e

−Ke Private key of an entity e

Ka,b Shared secret key between entities a and b

{m}Ka,b Message m encrypted and integrity-
protected with the symmetric key Ka,b

(See Section 2.4).
{m}+Ke Message m encrypted with the public key

of entity e.
l(e, t) Location (IP address and port number) of

the entity e at a certain point of time t

L(A, t) Data stored in P2P network required to
reach UA A at a certain point of time t

DHT stores information required to contact other UAs for
sending them application layer signaling messages. However,
the information stored in the Pr2-P2PSIP DHT differs from
P2PSIP. Specifically, it does not reveal the actual location
of UAs. The content of this information is explained in
Sections 2.2.2 and 2.3.2.

Forwarding.

Forwarding is an additional function that peers need to
perform in Pr2-P2PSIP. It differs from typical forwarding
in DHT algorithms with recursive routing, e.g., Chord or
Pastry, given that these DHT algorithms were not designed
with privacy in mind. Message forwarding in Pr2-P2PSIP is
explained in 2.2.1.

Overlay Algorithm.

We currently use Kademlia [20] as our DHT overlay al-
gorithm. However, Pr2-P2PSIP could be used with other
DHTs. We do not claim that the choice of the overlay al-
gorithm is orthogonal to the impact of Pr2-P2PSIP on user
privacy. Thus, this design decision requires further investi-
gation in future work. For this paper, we use the Kademlia
RPCs FIND NODE, FIND VALUE, PING and STORE in
the storage overlay. Since the forwarding overlay is used only
for finding other peers (i.e., no data stored in the DHT, see
Section 2.2.1 for details), the forwarding overlay makes use
only of the FIND NODE and PING RPCs.

Pseudonyms in the Storage and Forwarding Overlays.

The pseudonyms fi and si are temporal identities which
are unlinkable to the UA’s public identity Ai (we use non-
capital letters to denote pseudonyms). Pseudonyms fi and
si belong to an identifier space K, e.g. K = {0, . . . , 2160−1}.
Each pseudonym is linked to a public key as well: (fi, +Kfi),
(si, +Ksi). As such, a UA uses different public/private key
pairs for different purposes.

By “UA Ai”, we mean the UA with public identity Ai

while “UA fi” or “UA si” is the UA with pseudonym fi or
si respectively. Table 1 provides additional notations used
throughout this paper.

2.1.4 Threat Model

Given a UA A ∈ N , we assume that an attacker M wants
to collect as much information as possible about A, in par-
ticular:

1. its current locator l(A, t)
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2. its location profile: a history of l(A, t)

3. a social interaction profile: a history of social interac-
tions A→ B or B → A for any B ∈ N .

Note that man-in-the-middle, eavesdropping and message
forgery attacks on the application data (chat messages and
phone conversations) can be successfully countered (unless
the AS turns malicious) using the UA’s certificates provided
by the AS. Note also that the AS guarantees that each UA
receives a single pseudonym fi and a single pseudonym si,
so Sybil attacks can be excluded and eclipse attacks are dif-
ficult (since the overlay routing algorithm provides multiple
disjoint paths between two arbitrary peers).

We consider the following attackers in Pr2-P2PSIP:

1. a single malicious UA participating in the Pr2-P2PSIP
network: M ∈ N . In this case, we assume every UA
operates on its own. Different malicious UAs do not
exchange information for the sake of breaking other
users’ privacy. Thus, each UA can observe only the
messages it sends and it receives. Additionally, if it
forwards a message from one peer to another, it can
decrypt only the messages (or message parts) for which
it has the appropriate key.

2. a partial observer in the network underlay observing
that communication is taking place between different
IP addresses. The attacker may be able to observe
some traffic and deduce some conclusions about the
location or social interaction of some UAs.

2.2 Protocol Overview

In this section we describe how Pr2-P2PSIP handles data
storage and message forwarding. Storage and forwarding
in the Pr2-P2PSIP network differ from a “regular” P2PSIP
network, because UAs seek to keep their location and social
interaction private.

2.2.1 Message Forwarding

An application layer message (e.g., SIP MESSAGE for IM
or SIP INVITE for establishing a phone call) from a UA A

to a UA B is sent via intermediate forwarding peers using
so-called onion routing [15]. In onion routing, the sender of
a message m chooses intermediate forwarding peers which
route the message to B on behalf of A. A orders these peers
in series and encrypts m several times recursively. One layer
of encryption is removed at each of the forwarding peers, so
that the final peer in the tunnel has the original unencrypted
message.

In Pr2-P2PSIP, peers establish inbound tunnels and out-
bound tunnels (see Figure 2). The choice of tunnel length
has some effects on privacy which are discussed in detail in
Section 3. For illustration purposes, we consider a tunnel
length of three hops throughout Section 2.

A UA A uses its pseudonym (fO0 = fI0 in Figure 2) to
communicate with the first hop of each tunnel. For out-
bound tunnels, A (sending application layer messages) ge-
nerates symmetric keys for protected communication (i.e.
encrypted and integrity protected) with each of the out-
bound forwarding peers (fO1 , fO2 and fO3). For inbound
tunnels, A (receiving application layer messages) generates
symmetric keys for protected communication with each of
the inbound forwarding peers fI1 , fI2 and fI3 . In both cases,
A uses the public keys of the forwarding peers to distribute

fO1 fO2 fO3

A = 
fO0= fI0

fI1 fI2 fI3

Figure 2: Inbound and outbound tunnels of

sender/receiver A

the required symmetric keys which will be used during the
tunnel lifetime. Additionally, the forwarding peers estab-
lish TLS sessions for hop-by-hop security. Figure 3 sketches
the resulting encryption and integrity-protection layers. The
layered encryption ensures that the message looks different
for each hop.

While the end-to-middle symmetric keys are valid only for
the tunnel lifetime, a hop-by-hop TLS session may be mul-
tiplexed for several inbound and outbound tunnels serving
several sender/receiver peers and can be long-lasting. This
design decision is borrowed from Tor and should make traf-
fic analysis more difficult. Unlike Tor where all peers are
connected in a full mesh and establish TLS tunnels to each
other, Pr2-P2PSIP TLS tunnels are established on demand,
since otherwise Pr2-P2PSIP could not scale to more than
few thousand peers.

Forwarding Pool.

To discover forwarding peers, peers query the forwarding
overlay. Additionally, each peer keeps a local pool of the
forwarding peers it has learned about, and which it can ask
to be a part of its tunnels. This pool should be kept up-to-
date, so a peer can refresh its inbound or outbound tunnels.

The peer will occasionally learn about other forwarding
peers as a side effect of overlay maintenance. However, it is
crucial for the privacy goals of Pr2-P2PSIP to not rely solely
on overlay maintenance for re-filling its forwarding pool and
not to simply choose peers from its overlay routing table. In-
stead, a UA A should perform node lookups (a FIND NODE
RPC in Kademlia) for random identifiers in the forwarding
overlay when it needs to update its forwarding pool, in or-
der to prohibit an attacker M from being able to force A to
select her (M) as a forwarding peer in her tunnels (i.e., path
selection attack; see Section 3.1).

2.2.2 Contact Data Storage

The contact data of all UAs are stored in a DHT. For
each UA A there exists a value stored in the DHT with the
contact data of A under the key h(A). The contact data
is a tuple (+KA, L(A, t)). L(A, t) does not reveal any in-
formation about A’s real location l(A, t). Instead, L(A, t)
includes information about the entry points of A’s inbound
tunnels (i.e., the forwarding peers furthest from A in her
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Figure 3: End-to-middle and hop-by-hop encryption
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-P2PSIP

inbound tunnels), which will forward incoming messages to-
wards A. Details on the structure of L(A, t) are provided in
Section 2.3.2.

2.3 Protocol Operations

In this section we provide more low level details on the
protocol operations of Pr2-P2PSIP.

2.3.1 Tunnel Setup

Up to this point we have differentiated between inbound
and outbound tunnels. However, the procedure for setting
up both kinds of tunnels and the per-hop state required for
them is the same. A forwarding peer can be unaware of
the type of tunnel it is participating in. This reduces the
complexity of Pr2-P2PSIP.

In fact, in both cases communication takes place in both
directions, for instance to acknowledge tunnel setup and
to tunnel RPC responses backwards to the initiator of a
RPC (this is the case for publishing data in the DHT; see
Section 2.3.2; and retrieving data from the DHT; see Sec-
tion 2.3.3).

Forwarding peers need to store state information that is
required to process incoming and outgoing messages for each
tunnel. Let A be the UA which initiates the tunnel setup
for sending or receiving application layer messages. Let f1,
f2 and f3 be the forwarding peers chosen by A to build the
tunnel (as in Figure 3). A uses its pseudonym f0 to commu-
nicate with the first hop in the tunnel, f1. The state stored
at each forwarding peer fi, i = 1, 2, 3, called the tunnel bind-
ing in Pr2-P2PSIP, is a tuple which consists of the following
data:

• tunnel ID : a tunnel ID α used for multiplexing between
different tunnels,

• successor and predecessor : the pseudonyms, public
keys and locations of the successor and the predeces-
sor peers in the tunnel: (fi+1, +Kfi+1 , l(fi+1, t)) and
(fi−1, +Kfi−1 , l(fi−1, t)),

• end-to-middle symmetric key : Kf0,fi .

This data is distributed by A during the tunnel setup. Fur-
thermore, fi+1 and fi−1 are used at each forwarding peer
locally to determine whether it has already established TLS
sessions with the successor and predecessor peers.

The data for the tunnel binding is sent by A onion-encrypted
along the tunnel. For each node fi, i = 1, 2, 3, A sends (in-
directly) a message:

mi = (α,

fi+1, +Kfi+1 , l(fi+1, t),

fi−1, +Kfi−1 , l(fi−1, t),

Kf0,fi) (1)

For f3, the information about the successor is marked with
null values:

m3 = (α,

null, null, null,

f2, +Kf2 , l(f2, t),

Kf0,f3) (2)

Of course, this has the consequence that f3 can deduce that
it is the last hop in the tunnel. The impact of this infor-
mation available to f3 will be discussed in Section 3.1. The
message flow for setting up the tunnel initiated by A looks
as follows.

f0 ↔ f1 : TLS handshake

f0 → f1 : {m1, {m2, {m3}+Kf3
}+Kf2

}+Kf1

f1 ↔ f2 : TLS handshake

f1 → f2 : {m2, {m3}+Kf3
}+Kf2

f2 ↔ f3 : TLS handshake

f2 → f3 : {m3}+Kf3
(3)

The TLS handshakes take place only if two successive for-
warding peers have not yet established a TLS session. Af-
ter tunnel setup, A (i.e., f0) can exchange messages with f3

without revealing her location l(A, t) or her identity (neither
the public identity A, nor her pseudonym f0). f3 knows only
the information about f2.

A message m from A to f3 is forwarded as follows:

f0 → f1 : {α, {α, {α, m}Kf0,f3
}Kf0,f2

}Kf0,f1

f1 → f2 : {α, {α, m}Kf0,f3
}Kf0,f2

f2 → f3 : {α, m}Kf0,f3
(4)

while a message from f3 to A is forwarded as follows:

f3 → f2 : α, {m}Kf0,f3

f2 → f1 : α, {{m}Kf0,f3
}Kf0,f2

f1 → f2 : α, {{{m}Kf0,f3
}Kf0,f2

}Kf0,f1
(5)

The tunnel setup (message flow (3)) is acknowledged by the
last forwarding peer f3. Thus, the acknowledgement mes-
sage is the first message sent from f3 to A via f2 and f1.
Note that the acknowledgement of the tunnel setup by f3

is crucial for the reliability of Pr2-P2PSIP. This will be dis-
cussed in detail in Section 3.2.

2.3.2 Publishing UA Contact Data

Publishing the contact data of a UA in the DHT makes
use of outbound tunnels and the Kademlia STORE RPC. A
UA A publishes its application layer public key (+KA) as
well as the pseudonyms, the public keys and the locations of
the entry points of its inbound tunnels. For example, assume
A has three parallel inbound tunnels. Then, the value stored
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Figure 4: Publishing UA contact data in the DHT

in the DHT under the key h(A) is a tuple (+KA, L(A, t))
where

L(A, t) = (fI3 , +KfI3
, l(fI3 , t), α),

(f �I3 , +Kf �I3
, l(f �I3 , t), β),

(f ��I3 , +Kf ��I3
, l(f ��I3 , t), γ) (6)

where fI3 , f
�
I3 and f

��
I3 are the entry points of the different

inbound tunnels; and α, β and γ the respective tunnel IDs.
The STORE RPC request is sent from A to fO3 using mes-
sage flow (4). This is depicted in Figure 4. It is crucial that
the STORE RPC responses received by fO3 are forwarded
back to A (using message flow (5)). The reason for this is
that A can not be sure that all peers in the outbound tunnel
(fO1 , fO2 and fO3) are still online since the tunnel has been
established or refreshed. If A does not receive a response
to her STORE request from fO3 , she needs to re-initiate
the RPC using another outbound tunnel. The time interval
between two successive RPC requests is a trade off between
latency and signaling overhead. In the extreme case, A could
send STORE RPCs simultaneously along several outbound
tunnels. However, this parallelism may produce a large un-
necessary signaling overhead depending on the stability of
the network (and thus, the stability of the outbound tun-
nels). As a trade off, we use an aggressive timeout of 1s

before the next outbound tunnel is invoked.

2.3.3 Retrieving Contact Data

Looking up data in the DHT is quite similar to publish-
ing data in the DHT except the Kademlia RPC used is
FIND VALUE. A uses one of her outbound tunnels and asks
the last peer in the tunnel to lookup the data on behalf of
her. The same procedure with timeouts is performed if no
response is received from an outbound tunnel.

Using the same procedure for publishing and retrieving
data in/from the DHT reduces the complexity of the proto-
col.

2.3.4 Bidirectional Signaling

Once A has found the entry points of the inbound tunnels
of B, she can use her outbound tunnels to send application
layer messages to B. A may include her real location l(A, t)
(encrypted with +KB) in the first signaling message to B

or L(A, t) if she does not want to reveal her location to
B. The same holds for the response of B to A. Every
SIP message is acknowledged end-to-end, i.e., if B receives a
message from A through one of his inbound tunnels, he sends
an acknowledgement through one of his outbound tunnels.

The same procedure with timeouts applies here as well: if
A sends a SIP message to B and the acknowledgement does
not reach A within 1s another end-to-end path, i.e., another
combination of an outbound tunnel of A and an inbound

BA

Figure 5: Bidirectional signaling in Pr
2
-P2PSIP

tunnel of B is used. At this point, it is worth it mentioning
that Pr2-P2PSIP is designed with signaling in mind and
is not optimized for real-time communication. The main
problem with real-time communication is the accumulated
one-way-delay in both directions between A and B, given
that there are four to six hops between A and B (depending
on the tunnel length).

2.4 Cryptographic Primitives

In this section, we provide implementation details on the
cryptographic primitives used in Pr2-P2PSIP.

Symmetric Cryptography.

As mentioned in Table 1, {m}Ka,b is a message m en-
crypted and integrity-protected with the shared key Ka,b.
This is used to provide end-to-middle security in the in-
bound and outbound tunnels (see Figure 3). However, it is
well known that different keys should be used for different
purposes and for each direction [13]. Thus, four symmetric
keys are derived from Ka,b on both sides using a crypto-
graphic key expansion function. These keys are derived at
the tunnel setup and used during the tunnel lifetime.

Public Key Cryptography.

Given that Pr2-P2PSIP makes extensive use of public key
encryption, in particular for inbound and outbound tunnel
setup, it is crucial to optimize the use of the public key cryp-
tographic primitives. We use two solutions for this purpose:

• a message m from a to b encrypted with the public
key +Kb is actually encrypted with a temporary sym-
metric key Ka,b generated by a. Then, {m}Ka,b is
sent together with the temporary key Ka,b encrypted
with +Kb. Thus, {m}+Kb is actually implemented as
({Ka,b}+Kb , {m}Ka,b).

• an important design decision in Pr2-P2PSIP is to use
Elliptic Curve Cryptography (ECC) [31] instead of RSA
for public key encryption. The reason is the convenient
key length without necessarily sacrificing performance.
An ECC key length of 194 bits provides comparable
entropy to a 2054 bit RSA key1.

The impact of the design decisions on the cryptographic
primitives are further discussed in Section 3.3.

2.4.1 Pitfalls

In this section, we explain a few details that need to be
taken into account when implementing Pr2-P2PSIP. These
details were skipped in the previous sections for the sake of
simplicity.
1The choice of the private key for RSA is limited by the
choice of prime numbers, while any random number can be
used as a private key for ECC.
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Outbound tunnels used by A for publishing L(A, t) should
not be used for other purposes, e.g., retrieving contact data
of another UA B. The last hop in the outbound tunnel of
A, fO3 sees only the hash value of A when the data is stored
in the DHT. However, if fO3 has a list of user names, it can
determine whether A is one of them. If the same outbound
tunnel is used for retrieving the contact data of B, fO3 can
deduce that A is about to send a SIP message to B. Thus,
the social interaction privacy of A would be broken.

In the description of the tunnel setup in Section 2.3.1, the
tunnel ID α remains constant along the tunnel. However,
this raises a privacy threat especially for inbound tunnels.
Intermediate hops (fI1 , fI2 and fI3) are all aware of the
tunnel ID α published in the contact data of A in the DHT:
L(A, t). Thus, by crawling the DHT, fI1 can discover which
UA A has published its contact data L(A, t) with α as tunnel
ID, and can deduce the public identity of A. Since fI1 has
direct IP communication with A, the location privacy of A

is broken. In order to defeat this attack, the tunnel ID has
to be changed at each hop. Thus, each forwarding peer has
two different tunnel IDs, one shared with the predecessor
and another one shared with the successor. Since A needs to
know the final tunnel ID at fI3 in order to publish its contact
data L(A, t) in the DHT, fI3 informs A about the tunnel
ID to be published when it confirms the tunnel setup to A.
Since fI3 and A use end-to-middle encryption to secure their
communication, fI1 and fI2 can not deduce which tunnel ID
is published in the DHT.

3. EVALUATING PR2-P2PSIP

3.1 Threat Analysis

In this section, we evaluate whether Pr2-P2PSIP fulfills
its goals, i.e., whether it can thwart attacks on location pri-
vacy and social interaction privacy. Additionally, based on
an extensive threat analysis, we deduce appropriate recom-
mendations for the tunnel length.

The threat analysis of Pr2-P2PSIP benefits from attacks
on anonymization networks that have been described in the
literature. Therefore, we provide an overview of those at-
tacks that are relevant to Pr2-P2PSIP first. We then eval-
uate whether these attacks can be applied to Pr2-P2PSIP
and if Pr2-P2PSIP introduces new attack vectors.

3.1.1 Attacks on Anonymization Networks

Attacks on anonymization networks can be classified into
passive and active attacks. Passive attacks are attacks where
the attacker monitors communication between other peers.
For this purpose, the attacker may try to become part of one
of the victims tunnels. However, in passive attacks, attack-
ers do not alter the data they observe or forward. In con-
trast to passive attacks, active attacks involve a participant
actively altering or injecting data in the network. Neverthe-
less, an attacker may combine passive and active attacks in
order to reach his malicious goals. As with all privacy pre-
serving networks, a trade off exists between usability and
security.

Traffic Analysis.

Traffic analysis is a general term referring to monitoring
data as it passes through a network to glean useful infor-
mation. In an onion routing network over the Internet this
typically means monitoring underlying network communi-

Pr2-P2PSIP
network

fi

fj

Figure 6: Passive attacks on Pr
2
-P2PSIP

BMfI2fI3

Figure 7: Path selection attacks on Pr
2
-P2PSIP

cations or data handled by a participant in the network
overlay. A subset of traffic analysis called timing analysis
measures when data enters or exits the network or nodes in
the network. All of the attacks described herein utilize some
form of traffic analysis. As discussed in [3, 33] an attacker
that is able to observe both ends of a tunnel may be able
to correlate that two peers (identified by IP addresses) are
communicating by analyzing inbound and outbound packet
counts between every two peers. This attack is depicted in
Figure 6. However, the attacker can not be sure that the
two peers are communicating, since they could simply be
forwarding data for other peers.

Path Selection Attacks.

Another type of passive attack is the path selection at-
tack [5]. The attacker forces particular peers to be chosen
for a tunnel, preferably controlled by the attacker. Since
we assume peers do not collude in Pr2-P2PSIP, this attack
is useful only if the attacker is on an end of the tunnel di-
rectly connected to the victim as in Figure 7. Given that
peers choose forwarding peers using random identifiers in
the forwarding overlay, the probability of a successful path
selection attack when a peer builds its inbound tunnels is
inversely proportional to the size of the network. However,
given that a peer occasionally has to change the peers in its
inbound tunnel, the probability of a successful path selection
attack grows over time.

Most other passive attacks [3, 9] require a global passive
adversary, outside of the threat model for our work.

Congestion Attacks.

The congestion [23] or circuit clogging [21] attack com-
bines typical traffic and timing analysis with an active de-
nial or reduction of service attack. The basic layout of this
attack is depicted in Figure 8. In this type of attack, a ma-
licious peer initiates a “legitimate” communication with the
victim. Using this communication, she alternates between
periods of sending data and being silent on the tunnel. She
concurrently builds tunnels between all (or some subset of)
possible other peers in the network and sends probe traffic
down each. If she can correlate the sending periods on the
legitimate tunnel with traffic on the probe tunnels she has
discovered that some peers on the probe tunnel are also part
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of the legitimate one. This method works if forwarding peers
have to split resources equally between their tunnels; utiliz-
ing one tunnel therefore alters the latency properties of the
other tunnels. By building repeated probe tunnels through
different sets of possible peers she can eventually determine
exactly which peers are being used. Provided that the peers
on the legitimate tunnel are rotated over time (as is the
case in Pr2-P2PSIP) and the victim will be the only peer
which will be always part of the tunnels, the attacker could
discover the actual IP address of the victim.

3.1.2 Attacks on Pr
2
-P2PSIP

In this section, we provide a security threat analysis of
Pr2-P2PSIP on inbound and outbound tunnels for different
tunnel lengths.

Attacks on One-hop Inbound Tunnels.

Using one-hop inbound tunnels, the only inbound forwar-
ding peer and potentially malicious peer M = fI1 is directly
connected to the victim B. The contact data of B pub-
lished in the DHT points to fI1 . Thus, by crawling the
DHT (i.e. the storage overlay), fI1 can find out which UAs
have published their contact information with fI1 as a tun-
nel entry point. fI1 might be the tunnel entry point for sev-
eral peers, let’ say B, B

� and B
��. After collecting the data

{L(B, t), L(B�
, t), L(B��

, t)} from the DHT, fI1 can correlate
the tunnel IDs in L(B, t), L(B�

, t) and L(B��
, t) with the tun-

nel bindings it has previously setup and can unambiguously
deduce the location of B, B

� and B
��.

Attacks on Two-hop Inbound Tunnels.

Using two-hop inbound tunnels, as shown in Figure 9, a
similar attack remains possible. A malicious peer M can
trivially recognize from communication with the successor
and the predecessor in the tunnel that she is not the entry
point of the tunnel. Thus, M can deduce its position in the

tunnel and that its predecessor is the initiator of the tunnel
(B) and its successor is the entry point of the tunnel (fI2

in Figure 9). By crawling the content of the DHT, M can
find out which UAs have published their contact information
with fI2 as a tunnel entry point, again let’ say B, B

� and
B
��. The difference to the one-hop case is that M can not

necessarily identify which one of these peers is the initiator
of the tunnel she is part of. This is because the tunnel ID
is not constant along the tunnel. Nevertheless, M could
significantly reduce the number of possible public identity
of the tunnel initiator, potentially to one. This would lead
to an unambiguous link between the public identity of B

and his current location l(B, t).
Depending on the size of the network, B may have changed

its inbound tunnels while M is still crawling the DHT, and
the data M is looking for in the DHT may become unavail-
able. However, we can not rely on this assumption, if M has
sufficient resources.

One possible approach to reduce the probability of this
attack could be the concept of entry guards [25], which were
suggested for thwarting attacks on discovering the origin of
hidden services in Tor. These attacks are based on path
selection attacks. The concept of entry guards is as fol-
lows; instead of choosing uniformly at random from the set
of all peers for the crucial hop (the nearest to the hidden
server in Tor, the nearest to the UA in the inbound tunnel
in Pr2-P2PSIP, i.e., fI1)), a small set of peers are chosen
initially and one of these is always utilized in that position.
Choosing forwarding peers uniformly at random gives a pa-
tient attacker the chance to be chosen as the crucial hop
with a high probability if B rotates his tunnels regularly,
whereas the probability of choosing the attacker with “fi-
nal guardians” is only g/n where g is the total number of
guardian nodes used (and n the overall number of peers as
mentioned in Section 2.1).

Nonetheless, since malicious peers have the chance here
to discover the public identity of B and its location with an
effort estimated by O(n) (crawling the DHT), we consider
the attack on one-hop and two-hop inbound tunnels as a real
threat to Pr2-P2PSIP.

Attacks on Three-hop Inbound Tunnels.

Using three-hop inbound tunnels, a possible attack sce-
nario is a variant of the circuit clogging attack, where the
participants of a tunnel can be deduced. In this scenario
the attacker M initiates a communication with the victim
B (Figure 8). M wants to discover the IP address of B. To
do so, she actively builds tunnels through many peers which
she uses to send a steady stream of data to herself. She
then sends a certain pattern to B (for example, via chat),
which can be detected on the tunnels that she is monitor-
ing because of interference [21, 23, 28]. Since M may not
necessarily obey to the agreed inbound tunnel length in the
network, she could conceivably connect to every peer with a
one hop tunnel back to herself and send the pattern to B (via
his legitimate inbound tunnel). If the pattern is detected,
this reveals either B or a part of his tunnel. By repeating
the same procedure for each of B’s multiple inbound tun-
nels, M can eliminate B’s tunneling peers, because B will be
the only peer present on each of the inbound tunnels used.

This attack becomes more difficult as the number of peers
in the network increases, because the attacker needs to mon-
itor them all for the pattern she is sending. False positives or
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false negatives may occur due to other traffic in the network
at the same time as the attacker’s probe or pattern traffic.
The attack may also take a prohibitively long amount of
time to mount; if the attacker cannot monitor all nodes in
the network at once, she will need to perform this attack by
monitoring only some subset of the network at a time.

General Attacks on Outbound Tunnels.

No matter how long the outbound tunnel is, the last hop
in the tunnel (furthest from A) which is used for publishing
the contact data of A in the DHT should not be used for
other purposes as mentioned in Section 2.4.1. Otherwise,
the social interaction privacy of A would be broken.

Attacks on One-hop Outbound Tunnels.

If the outbound tunnel of a UA A consists of one hop
only, when A publishes her contact data in the DHT, the
outbound forwarding peer fO1 receives the STORE RPC
from A directly, and thus, can trivially discover the public
identity of A and correlate it with her IP address. This
would break the location privacy of A.

Attacks on Two-hop Outbound Tunnels.

Attacks on two-hop outbound tunnels become more diffi-
cult. The last peer in the outbound tunnel fO2 may misuse
the property of Pr2-P2PSIP that communication in both in-
bound and outbound tunnels takes place in both directions,
and send certain traffic patterns to fO1 which are forwarded
to A and thus may be the basis for a congestion attack.

Conclusions.

Given the threat analysis above, we conclude that:

• Passive attacks are of limited use because while they
may reveal that two peers are participating in the net-
work and connected, this does not indicate whether the
peers are forwarding data for other peers or actually
communicating.

• Path selection attacks require that the attacker be cho-
sen as the victim nodes final inbound hop. The proba-
bility of the success of such an attack is inversely pro-
portional to the size of the network. Though it in-
creases over the time by changing the tunnel. Unless
entry guards are chosen as crucial hop.

• Congestion attacks may be feasible, but at high cost,
take a long time and are susceptible to false positives
and false negatives.

• A tunnel length of three hops for inbound tunnels and
two hops for outbound tunnels provide location and
social interaction privacy at a high and satisfactory
degree.

3.2 Reliability Cost Analysis

In this section, we provide a model of Pr2-P2PSIP based
on reliability theory [26]. This model will then be used
for estimating the overhead generated by adding privacy to
P2PSIP. First, we start with some basic knowledge in relia-
bility theory from [26] which is required to understand the
model.

3.2.1 Reliability Theory

Reliability theory provides tools for estimating the relia-
bility of a whole system by estimating the reliability of the
single units/components of the system. Let T be the time to
failure of a unit, i.e., the time elapsed between when the unit
is put into operation until it fails for the first time. T can
be assumed to be continuously distributed with a density
function f(t) and distribution function:

F (t) = Pr(T ≤ t) =

�
t

0

f(u) du (7)

The reliability R(t) is the probability that the unit will be
still operating at time t:

R(t) = 1− F (t) = Pr(T ≥ t) (8)

A structure of units is series if the operation of the structure
depends on the operation of all units in this structure. A
parallel structure is a structure which operation requires at
least one of the units operating.

Let a structure consisting of k units with independent
failures2 and equal reliabilities Ri(t) = R(t) for all units
i = 1, . . . , k. If the structure is series, the reliability of the
structure is

R∧(t) = R1(t)R2(t) . . . Rk(t) = R
k(t) (9)

If the structure is parallel, the reliability of the structure is

R∨(t) = 1− (1−R1(t))(1−R2(t)) . . . (1−Rk(t))

= 1− (1−R(t))k (10)

3.2.2 Modeling Pr
2
-P2PSIP Networks with Reliabi-

lity Theory

A Pr2-P2PSIP (or P2PSIP) network is a system which
consists of multiple units, which are the peers. The time to
failure of a peer is the time interval between the time when
the peer goes online until it leaves the network, i.e., T is
the peer lifetime. Different studies of P2P networks for file
sharing, in particular KAD [35] and for VoIP, in particular
Skype [16] have shown that the peer lifetime is heavy-tailed
distributed. Since it is difficult to estimate appropriate pa-
rameters for a P2PSIP network, we focus on a generic an-
alytical model first. Note that Skype is not necessarily a
good representative since Skype clients are mainly installed
on PCs/laptops. Skype shows a high number of peers dur-
ing working days and middays, while peers in a P2PSIP
network could be running, e.g., on some fixed hardphones
which are permanently online, or on mobile smart phones,
which may change their IP addresses more frequently than
laptops. Nevertheless, Skype is the most similar application
to P2PSIP and Pr2-P2PSIP and the study in [16] will help
us to interpret the results of our reliability costs analysis as
shown below.

Reliability Model of Pr
2
-P2PSIP.

A UA B refreshes its contact data in the DHT as well
as its inbound tunnels periodically with a refreshing period
e.g., τ = 20mn, in order to make sure it remains reachable
in the Pr2-P2PSIP network with high probability. This high
probability is a target reliability, e.g., R̄ = 1− 10−5.

When B performs a refresh operation at t = kτ, k ∈ N,
it receives acknowledgement messages for both the storage

2which is a dominant assumption in reliability theory
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Figure 10: Example reliability of a single storage

unit si or inbound forwarding unit fi with periodic

refreshes. τ = 20mn.

and the tunnel refresh/setup (as described in Sections 2.3.1
and 2.3.2). Thus, we assume the probability that a peer/unit,
either involved in the storage of the contacts of B or involved
in one of the inbound tunnels for B, is online at t = kτ is
1. Then, this probability decreases over the time to the
minimum value. An example of this behavior is shown in
Figure 10. We denote by µ the minimum reliability of a
peer at the end of each refreshing period.

µ = lim inf
t→(k+1)τ

R(t) k ∈ N (11)

µ could be estimated autonomously by B through measure-
ments. It is the probability that if another UA is observed
online at t, the UA will remain online until (t + τ). µ can
be considered as a metric for the churn in the network. If
the measured value for µ is too low, then the UA may have
to decrease τ , and thus increasing µ.

Furthermore, the following assumptions are required for
our reliability analysis:

• We assume that all peers are cooperative, i.e., as long
as a peer is online, it will perform requests from other
peers to create tunnels, forward messages and store
data.

• We assume that peers/UAs leave and join the network
independently. A UA which leaves the network deletes
all contact data and tunnel bindings of other peers.

• We assume a DHT model like in KAD [35] where peers
which publish data are responsible for refreshing this
data themselves, i.e., replica nodes do not re-publish
data among each other, in particular when some of
them leave the network, or new nodes close to the key
of the data enter the network.

• We assume that routing in the DHT always succeeds.
In particular if A is looking for the contact data of B

and there is at least one replica node si storing this
data, then A will be able to reach si and find the con-
tact data of B.

Figure 11 shows the resulting reliability model under these
assumptions. A UA A calling B needs to reach at least one
of the storage peers si which have stored the contact data

A

s1
s2

sm

.

f1,1 f1,2 f1,p.

f2,1 f2,1 f2,p.

fq,1 fq,1 fq,p

B

.

.

Figure 11: Reliability model of Pr
2
-P2PSIP

of B. Then, A needs to find at least one inbound tunnel to
B where all peers which build the tunnel are still online. As
shown in Figure 11, let m be the number of storage peers,
p the length of B’s inbound tunnels and q the number of
parallel inbound tunnel.

Estimating the Overhead of Privacy.

If p = 0, then we have a regular P2PSIP network. Let m0

the number of required parallel storage peers, then it follows
from equation (10):

1− (1− µ)m0 ≥ R̄ (12)

Thus, the number of required storage peers for an inbound
tunnel length p = 0 can be estimated by:

m0 ≥
ln(1− R̄)
ln(1− µ)

(13)

If p ≥ 1, then the reliability of the storage part at the end
of each refreshing period can be estimated as:

(1− (1− µ)m) (14)

and the reliability of the inbound forwarding part:

(1− (1− µ
p)q) (15)

Let R̄s the target reliablity of the storage part and R̄f the
target reliability of the inbound forwarding part. Thus, m

and q can be estimated as follows:

m ≥ ln(1− R̄s)
ln(1− µ)

(16)

q ≥ ln(1− R̄f )
ln(1− µp)

(17)

and the reliability of the whole system:

(1− (1− µ)m).(1− (1− µ
p)q) ≥ R̄sR̄f = R̄ (18)

As it can be seen in Figure 11, the overall number of peers
required for each UA in order to be reachable is (m + pq).

By varying the ratio R̄s/R̄f for a constant system target
reliability R̄ = 1− 10−5 we obtain different values for (m +
pq) which are slightly better than equal target reliabilities for
both parts, i.e., R̄s/R̄f = 1. Thus, we determine numerically
the optimum value of (m+pq) by varying R̄s/R̄f for different
values p ∈ {0, 1, 2, 3} and µ ∈ (0, 1] and R̄ = 1−10−5 (values
of µ are chosen stepwise with steps of 0.01). Figure 12 shows
the result. The number of peers required for a UA to be
reachable for incoming SIP message increases to infinity if
µ → 0 (i.e., average peer lifetime is ε → 0) and converges
to (p + 1) for µ → 1 (i.e. a static network with peers never
leaving).
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Figure 12: Number of peers required to keep a UA

reachable in a Pr
2
-P2PSIP network with target re-

liability R̄ = 1− 10−5

Interpretation based on Skype Traces.

Using the Skype network as an example, according to [16],
around 87% of the Skype super-peers have a peer lifetime
more than 30mn and 78% more than 1h. We interpolated
these values to estimate the privacy overhead for p = 3 with
different refreshing periods. The result is shown in Table 2.
E.g., assuming a refreshing period of 20mn in Pr2-P2PSIP,

Table 2: Estimation of the privacy overhead based

on Skype traces

Refreshing
period

µ Number
of storage
peers

Number of
inbound
tunnels

Total
number
of peers

(τ) (m) (q) (m+pq)
10.0 mn 0.95 5 7 26
20.0 mn 0.91 6 9 33
30.0 mn 0.87 6 12 42
40.0 mn 0.84 7 14 49
50.0 mn 0.81 8 17 59
60.0 mn 0.78 9 19 66

then around 33 peers would be required to keep a UA reach-
able for incoming calls. However, taking only Skype super-
peers into consideration means that in Pr2-P2PSIP only sta-
ble peers should be used for storage and inbound tunnels.

Note that if a UA needs around 33 peers for storage and
inbound tunnels, this means also that each UA will receive
on average 33 requests within 20mn from other peers to store
data or be a part of an inbound tunnel. Additional signaling
is required for the outbound tunnels, overlay maintenance
and DHT lookups.

Conclusions.

The reliability analysis above provides an estimation of
the impact of adding privacy to P2PSIP. The signaling over-
head generated by Pr2-P2PSIP to keep a target reliability of
(1−10−5) should not be underestimated. Further, the over-
head is sensitive to the stability of the storage and forwar-

ding peers. This may have different consequences depend-
ing on the types of devices used for the UAs. Processing a
few requests per minute for storage, tunnels, DHT lookups
and overlay maintenance may not be a problem for fixed
hardphones, but would mean a large resource consumption
for mobile devices, in particular if they are constantly awo-
ken from standby mode (at least, this is a problem today).
Given that the signaling overhead is sensitive to the stability
of the storage and forwarding overlay networks, it is crucial
for Pr2-P2PSIP to exclude peers with a short lifetime from
these overlays.

3.3 Cryptographic Overhead

Given the design decisions described in Section 2.4, the
overhead of the public key encryption of a message m sent
from a to b using a 194 bit ECC key +Kb and a 128 bit
temporary symmetric key Ka,b for AES encryption in CBC
mode consists of:

• the length of {Ka,b}+Kb , which results in an ECC
block size of 194 bits,

• the length of the initialization vector used for the sym-
metric encryption in CBC mode: 128 bits,

• and a maximum padding of 128 bits for the symmetric
encryption,

which results in an overall overhead between 322 and 450
bits, i.e,. approximately between 40 and 56 bytes. Thus,
even if a message is onion-encrypted with three layers the
overhead in terms of message length remains acceptable.

However, the cryptographic overhead of Pr2-P2PSIP in
terms of the number of public key operations increases lin-
early with the number of tunnels per UA and the number of
peers per tunnel. Thus, the same conclusions hold here as
in Section 3.2.

3.4 End-to-end Signaling Latency

The signaling latency from UA A to UA B is affected by:

1. the processing overhead at each forwarding peer,

2. the tunnel length, or the number of forwarding peers
used for inbound and outbound tunnels,

3. the accumulated one-way-delay along the full path be-
tween A and B,

4. the probability that all forwarding peers in a path are
online since they were last.

As mentioned in Section 2.4, once a tunnel is setup, only
symmetric cryptography is used. Thus, the cryptographic
processing is certainly not a bottleneck. As for the tun-
nel length and the accumulated delay, we believe that Pr2-
P2PSIP deployed with the recommended tunnels lengths in
Section 3.1 does not necessarily involve more signaling hops
than server-based SIP networks used in practice today, in
particular, where quite a few components are involved in
the signaling for different purposes, e.g., lawful interception,
billing, etc.

As for the probability that all forwarding peers in a path
are online, as mentioned in Section 2.3.4, A tries another
end-to-end path, i.e., another combination of outbound tun-
nel of A and inbound tunnel of B if it does not receive an
acknowledgement to a SIP message within 1s.
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Thus, the maximum overall signaling latency is expected
to be within a few seconds. If peers in the forwarding over-
lay are stable, it becomes more likely that the tunnels are
available and the signaling succeeds at the first attempt,
thus reducing the latency by an order of magnitude. If Pr2-
P2PSIP is used for chat, the same tunnels should be used
for subsequent chat messages, since once tunnels have been
successfully used, they are likely to remain available for the
next chat messages, assuming a heavy-tailed distribution of
the peer lifetime.

4. RELATED WORK

Location privacy was not a main concern when the Inter-
net was conceived, because hosts were fixed. However, it was
considered early on in GSM standardization. In GSM and
UMTS networks, each mobile devices has a unique identifier
called the International Mobile Subscriber Identity (IMSI).
However, temporary pseudonyms called Temporary Mobile
Subscriber Identities (TMSI) are usually used for commu-
nication with base stations. Nevertheless, both GMS and
UMTS authentication protocols allow an attacker to imper-
sonate a base station and request the User Equipment (UE)
to send its IMSI for authentication.

P2PSIP was suggested initially by [7] and [34] and raised
much interest and follow up work. Seedorf [32] discusses
the security issues inherent in P2PSIP and mentions privacy
briefly. In [4], the authors investigate a game theoretical
approach for the security threats of P2PSIP such as SPIT
and attacks on overlay routing. However, privacy is not
addressed.

RELOAD [18], the base protocol for P2PSIP allows for
different overlay algorithms to be plugged in. The IETF
P2PSIP WG charter [2] does not preclude the deployment
of anonymization networks. However, it can not be assumed
that any general purpose anonymization network could be
used. The Internet draft [17] describes SIP usage for RE-
LOAD and mentions explicitly that “all RELOAD SIP reg-
istration data is public. Methods of providing location and
identity privacy are still being studied”. Thus, Pr2-P2PSIP
is right on target to address this issue.

Reliability theory has been used in [35] for modeling P2P
networks in the context of the KAD file sharing network.
In [19], the authors investigate self-tuning behavior of DHTs
in order to optimize the reliability costs in the context of
Pastry. However, they consider only the reliability of overlay
routing. In [38], the authors investigate the costs of main-
tenance and lookup in DHTs with different ratios of super
peers. Their work considers regular DHT functionality with-
out privacy. Nonetheless, our work can be enhanced in the
future with a similar analysis in order to provide better in-
sight on the signaling overhead of Pr2-P2PSIP with different
ratios of fixed and mobile devices with different resources.
In [8,36] the authors demonstrate how the end points of P2P
VoIP streams, e.g. Skype streams, can be identified. Thus,
they demonstrate how one could break location and social
interaction privacy. However, Skype peers do not consider
each other as potentially malicious.

There are many anonymization networks which utilize onion
routing [15] or a derivative, notably Tor [10], JAP [12],
MorphMix [28] and I2P [11]. They all share character-
istics and sometimes differ only in subtle ways. Our in-
tention is not to invent a new anonymization network or
new anonymization techniques, but to leverage existing tech-

niques, particularly onion routing and inbound and out-
bound tunnels to address the privacy issues of P2PSIP. Nev-
ertheless, Pr2-P2PSIP can still be clearly differentiated from
existing anonymization networks in several aspects. Ap-
proaches for anonymization networks can be classified into
centralized and P2P approaches. Pr2-P2PSIP is a P2P ap-
proach. Centralized approaches, e.g., Tor [10], Crowds [27]
and MorphMix [28] rely on centralized databases (although
eventually redundant as in the Tor case) to get a list of relay
nodes. Pr2-P2PSIP relies on a forwarding overlay. Likewise,
Tor hidden services, which can be compared to Pr2-P2PSIP
inbound tunnels, are accessed via service descriptors stored
in a central database. In Pr2-P2PSIP, peers get the contact
data from the DHT before they contact the inbound tunnel
entry points.

In P2P anonymization networks, such as I2P [11], Salsa [24],
Cashmere [37], Tarzan [14] and AP3 [22], there is no central
authority as in Pr2-P2PSIP, which makes them vulnerable
to Sybil attacks. Further, peers select forwarding peers from
their P2P routing tables. This makes them vulnerable to at-
tacks where malicious peers attempt to dominate the routing
tables of other peers. Pr2-P2PSIP uses a separate overlay
for forwarding and chooses forwarding peers randomly.

Pr2-P2PSIP allows anonymous routing only within the
network. Other anonymity networks such as JAP [12], Cash-
mere [37], Tarzan [14], MorphMix [28] and Crowds [27] are
designed to allow communication with normal servers in the
Internet. Thus, they need to support outbound connections.
On the other hand, the clients do not have to be reachable
for incoming communication as in Pr2-P2PSIP.

In summary, Pr2-P2PSIP benefits from the design of Tor
and other anonymization networks and experience learned
from them, while it has been designed exclusively to provide
the P2P-based SIP user registration and session establish-
ment, while preserving the privacy of the network partici-
pants. To the best of our knowledge, there has been no work
which provides a dedicated solution to the privacy needs of
P2PSIP with such an extensive analysis of the implications.

5. CONCLUSIONS

Our conclusions are as follows: Pr2-P2PSIP provides lo-
cation and social interaction privacy with a tunnel length
of three for inbound tunnels and two for outbound tunnels.
Cryptographic overhead is not a hindrance for Pr2-P2PSIP,
in particular if ECC is deployed. Signaling latency improves
as the forwarding overlay becomes more stable. The signal-
ing overhead to keep a target reliability of (1−10−5) should
not be underestimated. Further, the signaling overhead is
sensitive to the stability of the forwarding overlay. Thus,
it is crucial for a successful deployment of Pr2-P2PSIP that
stable peers, i.e., those with a long lifetime, are preferentially
chosen for building tunnels.
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ABSTRACT
We address the well-known issue of one-way RTP flows in
VoIP communications. We investigate the main causes that
usually lead to this type of fault, and we propose a method-
ology allowing for their automated online detection and di-
agnosis. The envisaged approach exploits node cooperation
and is based on a more general framework for network faults
diagnosis called DYSWIS (Do You See What I See). As
most of the problems associated with one-way RTP can be
ascribed to the presence of NAT elements along the com-
munication path, one of the key features of the proposed
methodology resides in the capability to detect such type of
devices. Besides, another important aspect of this work is
that the diagnosis is non-intrusive, meaning that the whole
process is based on the passive observation of flowing pack-
ets, and on silent active probing that is transparent to the
users. In this way, we also avoid the possibility of being clas-
sified as SPIT (SPam over Internet Telephony). We provide
a thorough description of the various steps the diagnosing
process goes through, together with some implementation
details as well as the results of the validation process.

1. INTRODUCTION
We tackle the challenge of automatically detecting faults

occurring in SIP-based Voice over IP (VoIP) networks. We
first illustrate the most common fault scenarios that charac-
terize a complex communication infrastructure comprising
entities which handle end-to-end data, both in the control
plane (proxies, back-to-back user agents, etc.) and in the
data plane (NATs, Application Level Gateways, relays, etc.).
We then focus on one of the most critical faults that can hap-
pen when trying to setup a multimedia communication in a
SIP [1] network, namely the impossibility of creating a real-
time bi-directional communication channel between a caller
and a callee. Such fault, which is known in the literature
as the “one-way RTP issue”, can be due to a number of dif-
ferent yet often interdependent causes and represents one of
the most cumbersome problems VoIP architects have to face

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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when deploying and maintaining their networks. We deal
with the above mentioned issue by leveraging a novel peer-
to-peer architecture for network diagnosis, called DYSWIS
(Do You See What I See) [2], which has been conceived at
the outset as an extensible infrastructure for non-intrusive,
cooperation-based detection of network faults. We will de-
scribe how we extended DYSWIS in order to let it support
both the SIP and the RTP [3] protocol state machines. The
paper embraces an engineering approach. It delves into some
of the details of the most notable implementation choices
characterizing our contribution. It also illustrates how the
most common real-world scenarios which suffer from the
one-way RTP issue can be addressed with the approach we
propose. At the best of our knowledge, no other approaches
addressing the one-way RTP problem have been proposed
as yet. The paper is structured as follows. In Section 2
we report the main causes of the problem. In Section 3,
we first introduce the DYSWIS architecture as a framework
for automated network faults diagnosis; then we show how
we added to it support for the SIP, SDP [4] and RTP pro-
tocols. The section explains how we devised an approach
based on passive tests and silent active probing. Section 4
contains some implementation details, while in Section 5 we
show the results of our validation process. Finally, Section 6
concludes the paper by summarizing the main achievements
while also presenting the main directions of future work.

2. ONE-WAY MEDIA FLOWS: A WELL
KNOWN ISSUE

The problem of one-way RTP flows is very common in
VoIP communications. In this section, we provide a clas-
sification of the causes that lead to such kind of fault, by
splitting them into four main categories.

2.1 Configuration problems
Into this category fall all the problems that can be as-

cribed to some error in the configuration of the machine
hosting a User Agent (UA). First of all, there are possible
oversights in the configuration of the UA itself (e.g., wrong
audio capture device selected). Then, we have network inter-
face configuration errors, that are quite common especially
in multi-homed systems. In fact, it can happen to see RTP
packets being received and sent on two different network in-
terfaces, for example on machines having both a wired and
wireless connection up (this is not unlikely on Unix-based
systems, and is usually due to the configuration stored in
the /etc/hosts file). The presence of software firewalls not
properly configured can also cause one-way media flows: for
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example, if we want both audio and video to be involved
in the call, it would not be sufficient to open a couple of
ports, since each call leg consumes two ports (one for RTP
and the other for RTCP). Finally, we also classify IP address
conflicts in the network as a local configuration problem.

As we will see in Section 3.3, it is easy to diagnose prob-
lems falling into this category.

2.2 NAT-related problems
Most of the factors that can cause one-way media flows

fall into this category and are related to the presence of
NAT elements along the communication path. Several NAT
traversal solutions have been proposed by the Internet En-
gineering Task Force (IETF), namely the STUN (Session
Traversal Utilities for NAT) [5], TURN (Traversal Using
Relay NAT) [6] and ICE (Interactive Connectivity Estab-
lishment) [7] protocols and the Application Level Gateway
(ALG) and RTP proxy elements. If no such solution is em-
ployed, the User Agent is unable to receive RTP packets.
Even worse, even if a NAT traversal technique is employed, it
can happen that the “natted” party is anyhow unable to see
incoming packets. This is the case of the most widespread
NAT traversal solution: the STUN protocol. STUN is actu-
ally helpful in a number of cases; though, it is useless when
a User Agent is behind a symmetric NAT 1, in which case
it experiences one-way media flows. Furthermore, one more
scenario where the STUN usage does not avoid one-way RTP
flows is when both the caller and the callee happen to be in
the same subnet, since a lot of NAT elements discard packets
received from the private network and destined to their own
public IP address. The last situation can happen also if the
STUN protocol is not employed, but the NAT box has built-
in SIP Application Level Gateway (ALG) functionality. This
is becoming very common, as many of today’s commercial
routers implement such feature. Unfortunately, poorly im-
plemented ALGs are quite common, too, and in some cases
they can be the cause of the problem rather than the so-
lution2. Finally, very often the same device handles both
NAT and firewall functions; in these cases, port blocking
issues have to be taken into account.

2.3 Node crash problems
The sudden crash of a network node also causes the in-

ability to receive RTP packets. We remark that the crashed
node could be neither the caller nor the called party, but a
possible RTP proxy that belongs to the media path.

2.4 Codec mismatch
A lot of SIP clients offer the possibility to select only a

subset of media codecs, among the ones supported. Unfor-
tunately, sometimes this choice is not reflected in the capa-
bilities offered in the SDP, so it can happen that the result of
the media negotiation is a codec that has been disabled. As
a consequence of this, one of the parties involved in the call
would not hear the voice or see the video of the other, even if
it is actually receiving the corresponding RTP packets. We
report this kind of problem just for the sake of completeness,
as in this case we are not experiencing one-way media flows
since RTP packets flow in both directions. Consequently,
our work does not address this issue.

1For a thorough description of the different types of NAT,
the reader can refer to [5].
2See www.voip-info.org/wiki/view/Routers+SIP+ALG.

3. DIAGNOSIS: THE DYSWIS APPROACH
As previously introduced, this work is based upon a net-

work diagnosis architecture that is currently under develop-
ment at Columbia University, called DYSWIS3, which lever-
ages distributed resources in the network, called DYSWIS
nodes, as multiple vantage points from which to obtain a
global view of the state of the network itself. Each DYSWIS
node is capable to detect fault occurrences and perform or
request diagnostic tests, and has analytical capabilities to
make inferences about the corresponding causes.

3.1 Architecture overview
From a very high-level perspective, a DYSWIS node tries

to isolate the cause of a failure by asking questions to peer
nodes and performing active tests. The architecture is de-
picted in Fig. 1; in the following, we do not dwell on ar-
chitectural details, since these are beyond the scope of this
work. We just remark that a modular approach is adopted,
in order to allow support for new protocols in an easy fash-
ion. Specifically, each time a new protocol has to be added,
protocol-specific Detect and Session modules have to be im-
plemented, together with a representation of the fault. Fur-
thermore, new tests and probes have to be implemented,
too, when required. Finally, the rules that drive the diagno-
sis process have to be written. In fact, each DYSWIS node
relies on a rule engine that triggers the invocation of the
probes on the basis of the type of fault and of the result of
previous tests.

As probing functions need to be executed on remote nodes
that have specific characteristics, a criterion to identify such
nodes is needed, as well as a communication protocol. For
example, we could be interested in selecting a peer that has
a public IP address, rather than a node that belongs to
a given subnet. At the time of writing, remote peers are
discovered by means of a centralized repository where each
node registers all its useful information as soon as it becomes
available. However, an alternative approach, exploiting a
Distributed Hash Table (DHT), has been implemented in
order to better fulfill scalability requirements.

In order to communicate among each other, as well as
to convey information about detected failures and request
a probe to be run, the DYSWIS nodes exploit a request-
response protocol. For further details about how this func-
tionality is provided, refer to Section 4, which discusses im-
plementation aspects.

Finally, when the probing phase is completed, the Analysis
module produces the final response and presents it to the
user.

3.2 Adding SIP/RTP diagnosing features to the
framework

For the purpose of this work, we added support for both
SIP and RTP to the DYSWIS architecture. The detection
part is simply performed by “sniffing” packets on the SIP
standard ports 5060 and 5061, as well as on the media ports
indicated by the SDP’s m-lines. In Fig. 2, instead, we show
the SIP Finite State Machine (FSM) we devised for the ses-
sion module. We note that the detection process is based on
the observation of packets flowing through a host’s network
interface, so it is a bit different from the classical SIP state
machine.

3See http://www.cs.columbia.edu/irt/project/dyswis/
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Figure 1: DYSWIS architecture

Figure 2: SIP finite state machine

The creation of a new SIP session is triggered by a new
INVITE message and, within a SIP session, one or more RTP
sessions could be created, each one representing a single
medium. Specifically, the creation of an RTP session starts
with the first SIP message that carries an SDP body (that
could be either an INVITE or a 200) and is completed as
soon as the second SDP-carrying message is seen (a 200 or
an ACK, respectively). An RTP session could also be created
or modified by re-INVITE messages; we took into account
such possibility since it is of key importance when both par-
ties of the call make use of the ICE protocol. When the
ICE negotiation ends, in fact, the caller sends a re-INVITE
to update the media-specific IP address and port.

3.3 Proposed diagnosis flow
As already stated, the goal of this work is to diagnose

one-way RTP faults by identifying the source of the prob-
lem among the ones presented in Section 2. We represent
the whole process by means of a flow chart (see Fig. 3) that
applies to both UAC and UAS scenarios. It takes into ac-
count all the scenarios that can lead to one-way media flows
and, even if we will not thoroughly analyze all the possible
branches, we provide, in Section 5, some reference scenarios
that will help the reader understanding our work. In the

diagram, the “local” adjective is used to identify elements or
functionality that belong to the same subnet of the DYSWIS
node which experienced the fault, while“remote”elements or
functionality belong to the same subnet of the other party.
We also make a distinction between tests and probes: the
former class only exploits local information, while the latter
plays an active role by introducing packets into the network.
Finally, we explicitly mark the probes that need the help of
a cooperating node in order to be performed.

We observe that it is not always possible to exactly iden-
tify the cause of the problem. The capability of making
an accurate diagnosis, in fact, strictly depends on the com-
plexity of the network topology under consideration and on
actual availability of “remote” DYSWIS nodes, too. The
ability to identify such nodes is of key importance and is
far from trivial. In fact, when a remote node belongs to a
private network environment (i.e., the remote party of the
call is natted), its IP address is not helpful for our purpose.
Even the node’s reflexive address4 can be not helpful in cases
where hierarchies of NATs are involved, like the one depicted
in Fig. 4. We will explain in the following subsection how
we coped with this issue.

It is worth remarking that one of our goals was to carry
out diagnosis in a non-intrusive way. In other words, we did
not want to allocate new “real” SIP call towards the caller
or the callee, because they would be annoying and could be
easily classified as SPIT. Instead, a DYSWIS node tries to
collect as much information as possible: (i) from the obser-
vation of flowing packets, and (ii) with silent active probes
(e.g., a STUN transaction to determine its own reflexive ad-
dress). When an actual SIP session needs to be set up for
diagnosing purposes, it is established between two DYSWIS
nodes without using the default SIP ports, so that possible
softphones running on those machines would not be alerted.

3.4 Description of tests and probes
In this subsection we provide a thorough description of

the probing functions we designed and implemented. These

4From RFC 5389: the reflexive transport address is the pub-
lic IP address and port created by the NAT closest to the
server (i.e., the most external NAT)
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Figure 3: Flow diagram representing the whole diagnosis process
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Figure 4: An example of NAT hierarchy that com-
plicates the identification of “remote” peers

probes allow us to test the network environments close to
either the caller or the callee (e.g., NATs, ALGs), as well as
possible external nodes, like RTP proxies.

3.4.1 Only incoming test

This is an easy test that checks whether the detected one-
way RTP flow is only incoming or only outgoing.

3.4.2 ICMP port unreachable test

Here, we check if there are incoming ICMP port unreach-
able packets, which would be a clear symptom that the pro-
cess that was supposed to receive data is not active. Herein,
we refer to this situation as a node crash.

3.4.3 RTP proxy probe

This probe determines if there is an RTP proxy along the
media path. An RTP proxy could be manually configured in
the SIP client (e.g., a TURN server) or its usage might have
been forced by a SIP proxy by modifying the SDP payload
of the messages it forwards. We take into consideration both
cases. For the former, we compare the IP address contained
in the Contact header of an incoming message with the
SDP’s c-line of the same message: if they are different,
we can presume that there is an RTP proxy. As to the latter
case, instead, we inspect outgoing SIP packets, checking if
the IP address contained in the SDP’s c-line is different from
both the local interface address and the reflexive IP address
that is retrieved by means of a STUN transaction.

3.4.4 Remote party up probe

Whenever an RTP proxy is employed, we are not capable
to detect a possible crash of the remote node, since we would
not receive any ICMP packet. In these cases, we check the
availability of the remote party by sending a SIP OPTIONS

message to it. Such message is sent through all the SIP
proxies included in the signaling path, if any, in order to
cross a possible remote NAT, making use of the Record-

route and Route SIP headers.

3.4.5 Local NAT test

This test determines if the local node (i.e., the node which
experienced the fault) is behind a NAT by checking if the
local interface has a private IP address.

3.4.6 RTP port blocking

This probe verifies that the port number used for the RTP
flow is not being blocked by a possible firewall running on
the NAT box.

3.4.7 STUN probe

Here we determine if the local node is making use of the
STUN protocol. This probe consists in a STUN transaction
to learn the local reflexive IP address. The result is then
checked against the address contained in the SDP’s c-line of
an outgoing SIP message.

3.4.8 Local/Remote ALG

This probe consists of a direct call attempt to a public
DYSWIS node (i.e., a DYSWIS node that has a public IP
address). As long as this call attempt is performed without
exploiting any NAT-traversal technique, as well as without
the SIP extension for Symmetric Response Routing [8], it
lets us detect if the local or remote NAT has built-in Appli-
cation Level Gateway functionality. In fact, the call attempt
would succeed only if the private IP address, inserted by the
client in the SIP message, is being modified by the NAT el-
ement before forwarding it. As previously said, we do not
make use of the standard SIP ports for this call.

3.4.9 Direct call with STUN

This probe differs from the previously described one only
because the call attempt employs the STUN protocol.

3.4.10 Same NAT probe

The public (reflexive) IP of the remote party is compared
with the local reflexive address: if they match, the two par-
ties are assumed to be behind the same NAT.

3.4.11 Symmetric NAT probe

One functionality offered by the STUN protocol is the pos-
sibility to discover which type of NAT (Full Cone, Restricted
Cone, Port Restricted Cone or Symmetric) is deployed. We
use such feature to determine if there is a symmetric NAT,
that, as already introduced, might be the cause of the fault
we are trying to diagnose.

3.4.12 Remote NAT probe

One of the main issues we had to face is the detection of
remote NAT elements. In other words, we wanted to learn if
the remote party is in a private network environment. Some-
times this is easy because, parsing a received SIP message,
we find a private IP address (e.g., it could be in the SIP
Contact, From or To headers, or in the SDP’s c-line or o-
line). Unfortunately, this depends on the specific implemen-
tation of the SIP element: for instance, some clients, when
using STUN, put their public address in the SDP’s o-line,
while others do not. Similarly, some ALGs just parse out-
going messages and substitute every occurrence of a private
IP, while others perform better thought-out replacements.
When we cannot find any occurrence of private IP, we ex-
ploit a modified version of the IP traceroute we developed
on our own, that sends a SIP OPTIONS message gradually in-
creasing the IP Time-To-Live value. We send such request
towards the public IP address of the remote node and, if
we get an ICMP TTL exceeded packet whose source address
is the original target of our request, it is a clear indication
of the presence of a remote NAT element. Otherwise, we
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could either receive a SIP response (e.g., a 200) or do not
receive any response at all. In the latter case, after having
retried to send the message, with the same TTL value, for
a couple of times (to take care of possible packet losses), we
infer that there is a remote NAT box that is not a Full Cone.
Consequently, our SIP message is being filtered. Finally, if
we receive a response to the OPTIONS query, we cannot state
there is no NAT along the path, yet. In fact, in the standard
specification [9], there is no constraint for a NAT element
to decrease the TTL value while forwarding packets. This
topic has been discussed a lot on the BEHAVE5 mailing
list of the IETF, where both personal opinions and imple-
mentation reports were provided. It turned out that a NAT
does not always decrease the TTL of packets received on the
public interface, while, for diagnostic reasons, it always de-
creases it for packets generated in the private environment
and forwarded outside. Then, in order to take into account
this possibility, when we receive a response to the aforemen-
tioned SIP OPTIONS query, we check the TTL value of the
IP packet and try to infer whether it comes from a end-host
or it has been modified by a NAT. This check is performed
by considering that host operating systems have distinctive
values for the initial TTL. Then, if the packet did not go
through a NAT, the received TTL value would be equal to
one of such initial TTL values, decreased by the number of
“hops” returned by the traceroute. Otherwise, we infer the
presence of a NAT. Further details of these OS-specific TTL
values can be found in [10].

For the sake of completeness, we report a draft proposal [12]
that has been recently submitted to the IETF and that
might prove helpful for the NAT detection problem. It in-
troduces a new SIP header field called Debug whose purpose
is to convey extra debugging information.

3.4.13 Remote DYSWIS node probe

We conclude the description of the probing functions by
showing how we realized the selection of a DYSWIS node
that belongs to the same subnet of the remote party of the
call. As we already said, a selection merely based on the
public IP address would not be sufficient whenever there
is a hierarchy of NATs. Then, after having selected all the
DYSWIS nodes characterized by the same public IP address
as the remote party, by means of the criterion described at
the beginning of Section 3, we need to verify if one (or more)
of them can be exploited for our purposes. We achieve this
goal by sending a SIP INFO message in broadcast over the
LAN. Such INFO message has to be sent within the dialog
existing between caller and callee, so that, according to the
INFO’s RFC [11], “A 481 Call Leg/Transaction Does Not
Exist message MUST be sent by a UAS if the INFO request
does not match any existing call leg”. This is achieved by
making the node aware of the To and From tags and of the
Call-ID, so that it could be able to generate a request within
a specific dialog. Therefore, each selected node would receive
a non-481 response only if the remote party belongs to its
same subnet.

Among all the methods envisaged by the SIP protocol,
the only two that MUST6 send an error response whenever

5BEHAVE (Behavior Engineering for Hindrance Avoidance)
is the working group of the IETF which deals with the be-
havior of NATs
6In the IETF jargon, the capitalized word “MUST” repre-
sents an absolute requirement of the specification.

they do not find any existing call leg are INFO and UPDATE.
We chose to exploit the first one because, even if it is not
mandatory, it is widely implemented in almost all the clients
currently available.

4. IMPLEMENTATION DETAILS
In this section we provide some brief information about

the implementation choices. Besides Java, that has been
chosen at the outset as the programming language for the
whole framework for its well known platform-independence
characteristic, the framework exploits the Jess rule engine [13]
to control the diagnosis process. Jess uses an enhanced ver-
sion of the Rete algorithm [14] to process rules, making Java
software capable to“reason”using knowledge supplied in the
form of declarative rules. Consequently, we implemented the
whole flow chart presented in Fig. 3 as a set of rules in the
Jess scripting language. The example below shows the rules
allowing for the detection of a node’s crash, when incoming
ICMP packets are detected:

(defrule MAIN::RTP_ONEWAY

(declare (auto-focus TRUE)) => (rtp_oneway (fetch FAULT))

)

(deffunction rtp_oneway (?args)

"one-way RTP diagnosis"

(bind ?result (LocalProbe "RtpOnlyIncomingTest" ?args))(

if (eq ?result "ok") then

(bind ?finalresponse "Local configuration problem")

else then

(bind ?result (LocalProbe "IcmpDestUnreachTest" ?args))(

if (eq ?result "ok") then

(bind ?result (LocalProbe "RtpProxyTest" ?args))(

if (eq ?result "ok") then

(bind ?finalresponse "RTP proxy crash")

else then

(bind ?finalresponse "Other party crash")

)

else then

...

As to the SIP/SDP functionality, we adopted the JAIN
APIs [15] developed by the National Institute of Standards
and Technology (NIST).

For the invocation of remote probes on nodes that hap-
pen to be in natted environments, we chose to make use of
the udp-invoker library [16], slightly modifying it in order
to fit our needs. More precisely, a remote natted node is
contacted by means of a relay agent, as shown in Fig. 5: as
soon as a DYSWIS node belonging to a private environment
becomes available, it sends a udp-invoker ping message to
the relay agent, which in turn stores the related public IP
address and port. Such message is sent periodically, in order
to properly refresh the binding in the NAT table. Then, if
the probing functionality provided by a private node needs
to be exploited, the invoke message is sent through the re-
lay agent. We remark that, in such way, we managed to
cross any type of NATs. On the other hand, when the peer
has a public IP address, the XML-RPC protocol [17] is ex-
ploited. Since it uses HTTP as the transport mechanism,
it is more reliable than udp-invoker and, in some cases, it
helps crossing restrictive local NATs.

Finally, the Jpcap library [18] allowed us to “sniff” pack-
ets from the network interfaces and send ad-hoc formatted
packets, as well.

5. VALIDATION
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Figure 5: Remote probing functionality of natted
nodes leveraging a relay agent

In this section we provide the results of our validation. We
tested our work with several different SIP clients. Specif-
ically, we exploited the following softphones: X-Lite [19]
(Windows), SJPhone [20] (Windows and Linux), Ekiga [21]
(Linux) and PJSIP-UA [22] (Linux). As SIP and RTP prox-
ies, we used OpenSIPS [23] and its RTPproxy [24] compo-
nent, respectively. Finally, we developed our own implemen-
tation of a basic SIP ALG, since we could not find any suit-
able open-source library. With all these components, we set
up a distributed testbed between the IRT lab at Columbia
University and the COMICS lab at the University of Napoli.
For the sake of conciseness, we do not present all the possi-
ble diagnosis paths that result from the flow chart in Fig. 3,
which nonetheless have all been tested. Instead, we just pro-
vide a couple of representative scenarios, which show how
the diagnosis process takes place.

5.1 Scenario 1: problem with the local ALG
The first scenario we examine is characterized by the use

of an ALG in the local network. We deliberately modified
our ALG library in order to induce the one-way RTP fault.
Specifically, we let our ALG function modify the c-line in
the session-level section of the SDP message, without chang-
ing the same parameter in the media description section. So,
since the session-level parameter is overridden by an anal-
ogous one in the media description, if present, the remote
party will send its RTP packets to a private, non-routable,
IP address.

In Fig. 6 we show a snippet of the whole flow diagram
that applies to this situation, whose understanding is quite
straightforward. We just clarify the last steps. The call
attempted by the Local ALG probe can take place, thus re-
vealing the presence of an ALG. Though, the resulting RTP
flow is still one-way and this definitely represents a clue that
the source of the problem might be the ALG itself. Such con-
jecture is confirmed by the Direct call with STUN probe. In
fact, as long as we employ the STUN protocol before placing
the call, the ALG does not come into play, since there would
be no private IP addresses to replace.

5.2 Scenario 2: remote RTP proxy crash

Figure 6: Local ALG problem

Figure 7: Remote RTP proxy crash: network topol-
ogy

In this scenario, we suppose that both caller and callee
use an RTP proxy. If the proxy used by the remote party
crashes, the local DYSWIS node will experience a one-way
RTP fault. Furthermore, it will not see any incoming ICMP
packet (see Fig. 7).

In Fig. 8 we show the diagnosis steps in this scenario.
We are supposing that the remote node is behind a non-
symmetric NAT that has no built-in ALG functionality. How-
ever, even changing such hypotheses, we are still able to
identify the cause of the fault. In general, when the diag-
nosis process involves the remote subnet, the results of the
various probing functions allow us to narrow down the set
of possible sources of the problem. In this case, we first get
ensured that the problem cannot be ascribed to a remote
ALG; then, we exclude that it could be somehow related
to the remote NAT’s behavior, since the SIP+STUN call
involves two-way media flows. This brings us to the final
verdict. We observe that, in this lucky case, we are able
to detect the exact cause of the fault, while in other cases,
when the network topology is particularly complex, we are
able to narrow down the fault space to two possible choices.

6. CONCLUSIONS AND FUTURE WORK
In this work we dealt with RTP faults in VoIP networks.

Specifically, we addressed the well-known problem of one-
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Figure 8: Remote RTP proxy crash: diagnosis flow

way media flows, by first introducing the main causes and,
then, by proposing a methodology allowing for its online
detection and diagnosis. The proposed approach leverages
distributed resources in the network that cooperate in order
to isolate the source of the fault, as envisaged by the wider
framework for network fault diagnosis, called DYSWIS, it is
based upon. The diagnosis process is completely transparent
to the users and does not generate any unsolicited calls. We
showed that most of the times we are able to exactly identify
the source of the problem, while, in the worst cases, we man-
age to narrow down the fault space to two possible choices.
We provided the reader with a thorough description of the
diagnosis process, also presenting some reference real-world
scenarios, in order to ease its understanding. Finally, imple-
mentation details about the prototype we realized have been
provided, too, together with the results of the validation we
conducted.

The framework described in this paper paves the ground
to future research challenges. Besides its enrichment with
new protocols and new fault scenarios, we see a big potential
in the exploitation of the DYSWIS framework for security
purposes. For example, as long as we consider an intrusion
as a type of network fault, we might follow the DYSWIS
approach in order to build a distributed IDS (Intrusion De-
tection System). In such context, nodes cooperation is also
helpful in the reaction/remediation process. Finally, secu-
rity issues must be faced in order to avoid that the active
probing functionality is exploited for bad purposes by mali-
cious users. Then, it is worth providing the framework with
intrinsic mechanisms that guarantee its robustness against
possible attacks.
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ABSTRACT 

Existing online collaboration tools and platforms provide 
basic communications integration and the ability to include 
some real-time information sources. For enterprise use 
there are requirements for extending these tools with better 
integration with existing intelligent communication 
systems, simplifying the collaboration life cycle, enabling 
the collaboration process, and being able to support long-
term collaborations in a variety of ways. We present a new 
model for such a collaboration environment called 
ConnectedSpaces. Like a number of existing systems, 
ConnectedSpaces uses a collaboration space as the basic 
construct. We present important feature sets of 
ConnectedSpaces, including views, spaces as 
communication endpoints, space persistence and 
structuring, and a variety of types of embedded objects. We 
then describe novel features of the ConnectedSpaces 
framework, including space  history, embedded gadgets 
and robots, semantic processing, and integration with  other 
collaboration frameworks. Finally we illustrate specific 
ConnectedSpaces functionality with examples from 
experimental work. 

Categories and Subject Descriptors 
H.4.3 [Communications Applications]: Computer 
communication and information browsers 

General Terms 
Management, Design 

Keywords 
Collaboration Tools, Enterprise Communication, Feature  sets 

1. INTRODUCTION 
Today’s enterprise collaboration platforms include well 
known web conferencing systems, online document 
editing, shared document repositories, and voice and video 
conferencing. Rudimentary communications integration is 
starting to appear, with softphone and instant message 
components being integrated into web browsers and 
collaboration tools through Web 2.0 programming. 

More than twenty years of research in groupware, 
computer-supported cooperative work, and mixed reality 
systems has demonstrated a rich set of potential features for 
collaboration environments.  However the convergence of 
internet-scale telephony, messaging, RIA, web, online 
media, social networking, and real-time information feeds 
has rapidly enlarged the design choices.  It has also made it 
possible to launch mass market collaboration applications 
which are distinguished not by major feature differences 
but by stylistic associations such as tweeting, yammering, 
skyping, IM-ing, and blogging. 

We envision the following areas of evolution to these tools 
and platforms for increasing their utility for information 
workers in enterprises, and are particularly interested in 
seamless integration of intelligent communication 
capability: 

- Highly composable collaboration spaces including 
space addressing and nesting 

- Collaboration spaces as communication endpoints 
- Space history and temporal control which includes 

semantic time markers and layered time relationships  
- Group management and information security 
In this paper we present the following results: 

1. We describe features for ConnectedSpaces, an 
enterprise-oriented collaboration platform, and 
compare these features with existing collaboration 
platforms. 

2. We present the ConnectedSpaces framework for 
building scalable collaboration platform. 

3. We present implemented components of 
ConnectedSpaces-like functionality as illustration of 
key ideas. 

Section 2 summarizes related work in contemporary 
collaboration systems.  Section 3 describes the 
ConnectedSpaces collaboration framework. Section 4 
presents the categories of ConnectedSpaces features, and 
describes example use cases. Section 4 describes the 
ConnectedSpaces collaboration framework. Section 5 
describes implementation work on ConnectedSpaces 
components, and Section 6 concludes this paper. 
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2. RELATED WORK 
Collaboration platforms vary from wikis, blogs, and shared 
documents to web-based collaboration systems to 3D 
collaboration spaces offered by virtual worlds.  The focus 
in this paper is on the features of collaboration systems and 
is independent of the underlying collaboration tools used.  
A brief discussion of the existing classes of collaboration 
tools helps in understanding the new features of 
collaboration for enterprises that are discussed in the rest of 
this paper. For a survey of collaboration platforms, see for 
example [1]. 

Web based collaborations such as wikis, blogs, 
conferencing systems such as WebEx or Meeting Exchange 
are used for collaboration in enterprises.  While wikis and 
blogs are used as collaborative authoring tools for a large 
number of users, other web-based conferencing systems are 
used to create a space that combines users’ communication 
links with desk-top application sharing.  Typically, these 
include audio and video conferencing and features such as 
side-bar, remote-party mute, etc.  These systems are based 
on the notion that there is a common space that is accessed 
through a browser and users can collaborate in that space.   

Microsoft Groove [3] and Sharepoint offer an alternate 
approach for collaboration on a set of files or documents.  
The collaboration client is a thick application and not a 
generic browser based client.  Besides the client, the major 
variation of this approach is the individual view of data 
until it is synchronized.  That is, each user in the 
collaboration session can have their view of the data that 
they work on remotely and synchronize through various 
means to a common repository.  This synchronization is 
enabled in the client by providing tools for communication 
between users and by displaying the presence status of 
various users that belong to the collaboration session.   

Other new collaboration platforms such as Google’s Wave 
[1] and Thinkature [4] offer real-time collaboration tools 
that allows users to create and manage their own 
collaboration spaces.  The ability to create a collaboration 
space allows users to tailor collaboration space to the needs 
of a project or for a particular collaborative effort.  
Persisting these spaces allows users to continue a 
collaboration in a given space, and continue to use all the 
contacts, content, and other tools previously added to the 
space.  Further, Google Wave allows threading of a 
collaborative effort as a Wave and allows user-defined 
applications (gadgets) and automated participants (robots) 
to act on such waves.  In this paper, we argue that while 
these are important steps in enhancing collaboration spaces, 
for enterprise collaboration additional features are needed 
in those collaboration spaces. 

There is another set of collaboration platforms that are 
based on virtual worlds, such as Second Life [5], Kaneva 
[6], and There.com [7].  These virtual words offer features 

such as immediacy (real-time interaction), interaction 
(ability to view, create, modify, and act) on a shared space 
that is closer to replicating reality.  While these platforms 
offer rich user-experiences, often the creation of 
collaboration spaces and the navigation in those spaces is 
not easy.  The taxonomy of networked virtual 
environments [8] discusses the need for designing a 
network architecture within virtual environments.  

Broll et al. [9] defined an approach for inter-world 
communication. Bouras et al. [10] defined an approach for 
inter-world communication. Bouras et al. [11] proposed a 
distributed virtual reality networking platform for multi-
user interaction. Sallnas [12] provides a comparative study 
of different modes of communications. All of these efforts 
improve communication and interaction among users of 
virtual worlds, but are limited to instant messaging or in-
world voice. In this paper we propose novel concepts for 
integrating enterprise communications in collaboration 
platforms that is mixing in-world (virtual) communication 
with real world enterprise communication systems. Voice 
over IP (VoIP) based services provided by companies like 
Vivox [13] offer communication within virtual worlds, but 
are not enterprise grade with respect to their scope and 
their features. 

3. CONNECTEDSPACES 
3.1 Motivation and Goals 
Today's collaboration tools are powerful and widely used.  
Nevertheless we observe: 

- the need for better integration of intelligent 
communication capability with collaboration 
environments.  

- the value of simplifying the creation and initialization 
of new collaborations.   

- the importance of being able to structure collaborations 
and treat them as persistent and externally reference-
able, since enterprise collaborations are often long-
term, deal with complex information, and are 
important to document. 

To achieve these goals, our ConnectedSpaces framework 
uses increased automation, meta (view) mechanisms, 
integration with external information and communication 
resources, and semantic processing where feasible.  

The following table summarizes key concepts in our 
collaboration model.  

Table 1 Concepts in ConnectedSpaces 
Concept Definition 
space 
(collaboration 
space) 

A collaboration space provides a shared 
persistent container in which users perform 
collaboration activities. It requires resources, 
such as computation, communication, and 
storage devices, to support those activities. For 
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example, Google Wave, Microsoft Sharepoint, 
and many virtual worlds, such as the Second 
Life, are all collaboration spaces.  

view A view of a shared space is a user, a group, or a 
project specific meta perspective of the 
collaboration space that itself can be shared, 
annotated, analyzed, and stored for further 
retrieval.   

entity An agent that can view and modify the space 
and its attributes. Entities are also referred to as 
members of a space. Each entity has a unique 
identifier. 

contact Any entity which a given user may share a 
space with 

user A human entity 

robot A system owned entity that can automatically 
perform some actions in the space. 

avatar The representation of an entity in a space 

object A component embedded in a space that users 
and robots can operate on. It can be system 
created or created by users. Objects include 
content, gadgets, real-time information sources, 
other spaces, and gateways to components of 
other collaboration platforms. 

gadget An object that contains application logic that 
may affect other entities or communicate with 
applications outside of the collaboration space. 

application A collaboration application is used to provide 
certain functions to manipulate entities in a 
collaboration space. 

event An event driven collaboration space uses events 
to notify one entity about the system and other 
entities’ states and activities. 

session A collection of collaboration activities among 
users, robots, and objects. It spans a certain 
period of time, contains some specific semantic 
information, and requires resources, such as 
communication channels, storage, and network 
bandwidth, to support the collaboration 
activities.  A space may contain multiple 
sessions. 

template A pre-initialized set of objects that can be 
inserted into a space that provide a pattern for 
some collaboration activity. 

policy A rule specified by the entities managing a 
space and enforced by the collaboration 
framework which specifies constraints on 
sharing and accessing the space and its 
objects. 

Conventional collaboration tool features include creating a 
new collaboration space, adding collaboration tools and 
applications, initiating communication to members of the 
space, and managing access controls to the collaboration 
space.  In the rest of this section we present collaboration 
features that are important for enterprise users.     

3.2 Enterprise Collaboration Model 
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Figure 1 ConnectedSpaces Collaboration Space 

As shown in Figure 1, a collaboration space in 
ConnectedSpaces is represented in three dimensions: 
resources, time, and semantics. Each object in the 
collaboration space uses some resources, spans a certain 
period of time (life cycle of the entity), and has certain 
semantic properties (either pre-defined or dynamically 
updated).  

Each space has one or more entities which are members of 
the collaboration. Each entity has a unique identity. Entities 
can be organized in groups, and groups can be members of 
a collaboration space. Identities of entities are managed by 
the collaboration system. We call system owned entities 
collaboration robots or simply robots. In the collaboration 
space, there can also be sharable objects that member 
entities space can operate on, such as documents and 
images. Spaces can be nested, and as in Figure 1, a space 
can include or refer to another space.  

An important concept in the collaboration space is session. 
A session represents a collection of collaboration activities 
among users, robots, and objects within a space. It spans a 
certain period of time, contains some specific semantic 
information, and requires resources, such as 
communication channels, storage, and network bandwidth, 
to support the collaboration activities. 

A space will include one more sessions. There can be 
session specific robots and objects. A wavebot becomes 
active only if a user invites it to a session. A robot may be 
associated with a specific user. For example, a user may 
have an assistant robot to help her manage her sessions, 
such as preparing documents, automatically creating a 
session and inviting her to join, and recording the session.  

Outside of the space, there can be applications that can 
manipulate objects in the space or provide collaboration 
channels. For example, call routing functions can be 
considered as collaboration applications. Embedded 
communications widgets [14] are examples of such 
applications. In addition, the manipulation of user 
preferences and policies about appropriate collaboration 
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behavior in space can also be considered as collaboration 
applications. Such policies, preferences, and the history of 
the collaboration activity information can be saved in 
database for later mining by analytical functions. 

3.3 Collaboration Views 
While setting up sharing in collaboration spaces is essential 
for enterprises, valuable meeting time is lost in bringing 
appropriate content to the shared spaces.  The persistence 
of a collaborative space allows instant access to the 
previously shared content and a set of commonly used 
tools.  However, it does not address a fundamental issue of 
view in shared collaboration spaces.  A view of a shared 
space is a user, a group, or a project specific meta 
perspective of the collaboration space that itself can be 
shared, annotated, analyzed, and stored for further retrieval.    
In ConnectedSpaces, we add such a notion to instantly 
bring user specific dynamic context to a collaboration 
space.   

1. User-Specific Views:  Based on users’ personal data 
and preferences, ConnectedSpaces allows an overlay 
of views to collaboration sessions. An example of such 
a feature is a gadget or an object in a shared space that 
presents user specific dynamic data such as their 
interactions across enterprise data that is not shared 
with all the participants in the session.  This overlay 
presents appropriate information to be presented 
privately to a user for their active session. 

Figure 2 presents views in their simplest form.  The 
figure depicts a simple collaboration space of an end-
user.  It depicts the overlay of a user’s collaboration 
space with two views that contain data mined from 
user’s data.  The first of these views is a relevant 
contacts view that captures the user’s collaboration 
context, mines data from user’s previous sessions, 
email, calendar, and other data sources to present a list 
of contacts that the user may need during the 
collaboration session.  The second view is a relevant 
documents view that presents documents that may be 
useful for the user in the current session.  Figure 2 also 
shows a third personal view that is related to the 
context of a session.  It shows a list of shared 
colleagues with the remote party of a session.  

While these examples of views are simple, they 
present two important aspects.  One is that views 
enhance a user’s interaction in a collaboration session.  
A second aspect is the dynamic nature of views that is 
context-dependent.  In contrast, the contacts gadget in 
Google Wave is a personalized view but is static and 
does not depend on the collaboration context.  

 

 
Figure 2 Views in a Collaboration Space 

2. Sharing Views:  With appropriate access control 
mechanisms and authentication, users can share 
personal views with other users or with users who are 
not participating in the collaboration sessions.   

This feature could be used as a side-bar between a 
group of users in a collaboration session.  Also, in 
enterprise collaboration, where access to information 
and resources is often hierarchical, a manager may 
wish to share views with a delegate to make 
appropriate decisions during a collaboration session. 

3. Managing Views: Views can be attached to a specific 
space.  For views that are dynamic, then robots ensure 
that they are synchronized appropriately with the 
content of the space. 

3.4 Sharing Space and Navigation 
Typically, collaboration tools provide capabilities such as a 
desktop application sharing, document sharing, audio/video 
conferencing, and the ability to add new tools to shared 
collaboration spaces.  Despite being part of a shared space, 
these tools are independent.  That is, the navigation 
controls and context of these tools are not visible to the 
other tools or gadgets in the collaboration space.  Users 
have to work with each of these tools appropriately and try 
to connect with the context of their collaboration.  Some 
static context such as participants and existing documents 
can be shared in some collaboration space gadgets, but this 
notion is not extended to inter-gadget communication or 
navigation.  ConnectedSpaces offers extensions to provide 
new features that include dynamic exchange of context and 
navigation in across gadgets in a collaboration space. 

1. Inter-object communication:  ConnectedSpaces allows 
objects that communicate with each other during a 
collaboration session.  As an example, consider a 
collaboration session with a tool (gadget) that handles 
shared relevant documents.  If a new user joins the 
collaboration space through a communication session, 
the shared relevant documents gadget automatically 
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updates its content to include documents that relate to 
the new participant. 

2. Nested Spaces: As discussed in the previous section, a 
collaboration space can have nested spaces.   These 
spaces allow users to focus on a particular issue or 
permit a sub-session that contains confidential data. 
The participants in a nested space can be a subset of 
those participants for the parent space. The nested 
space has a unique that can be externally reference, for 
example, by a another space. 

3. Navigation:  ConnectedSpaces  allow navigation 
within a gadget or an object to automatically be 
reflected in other objects. 

3.5 Managing Collaboration Topics and 
Patterns 
Apart from the basic management of starting, ending, and 
persistenting collaboration spaces, ConnectedSpaces 
provides additional features that assist user interactions 
with collaborations sessions. 

Automatic Initiation of Collaborations:  Based on the 
information available in existing spaces, ConnectedSpaces 
robots can automatically create new spaces or initiate 
communication sessions in existing spaces.  Suggested 
collaborations spaces or sessions can be topic-based, and 
may be related to content in existing collaboration space or 
the availability of participants. The robot in some sense 
predicts the participants, the gadgets or objects required, 
and the data required for the collaboration session. 

Collaboration Template:  Collaboration has structure, and 
the structure of discussion depends on the purpose of the 
collaboration.  For example, parties may collaborate on 
negotiation, project planning, hiring, investment, and so 
forth. A template is a predefined set of objects and tools 
designed to support a collaboration for a specific purpose. 
When the collaboration is initiated, the template can be 
selected by the creator of the collaboration, saving the 
users some time in preparing the space for the intended 
collaboration. 

In addition, a collaboration space can be saved for use as a 
template for a future collaboration.  

3.6 Collaboration Spaces as Communication 
Endpoints 
In ConnectedSpaces, the space itself represents a 
communications endpoint. The advantages of such 
representation are as follows. 

- Each communications within a space is part of that 
space’s content and history. 

- Communications capability to all space members is by 
default integrated in each space without additional 
effort by the user. 

- Different spaces can be used to organize one’s past 
and future communications. 

- Communications to non-members can be provided by 
embedding specific communications gadgets with 
those participants. 

This means that the space is addressable for 
communications signaling and that all members of the 
space are notified for call initiation. Potentially, non-
members can also call the space.  One way to obtain 
addressability is to associate a unique identifier in a 
telephony network with each space instance. For this 
purpose, we assume the framework includes or integrates a 
SIP stack or other call stack, and automatically registers 
each space with the appropriate registrar. 

Each space has a default communications device 
representation, such as a softphone interface in a 2D space 
or a 3D representation in a virtual world.  This 
representation is in turn bound to one or more personal 
communication devices. A member uses their local device 
representation as the interface.  When initiating a call, it 
can be set up as conference call to all the members of the 
space, a subset, or other endpoints.  Robots which are 
members of the space can be on calls or initiate calls 
through the space provided the media type of the call is 
supported by the given robot.  

Example 1: Alice defines two spaces, one for work and the 
other for recreation, and Bob is a member of each space. 
Alice selects the communications device for the space to 
initiate a call to Bob. Bob gets a call initiation indication on 
his device representation(s) for the given space.  

Example 2: Alice, Bob, and Charlie are members of a 
space. When one of them initiates a call, both members 
receive a call initiation indication on their device 
representation(s). This is a type of follow-me conferencing.  
If Jim (a non-member) initiates a call to the addressed 
assigned to the space, then the associated endpoints of 
Alice, Bob, and Charlie receive a call initiation indication. 

Example 3: Alice uses the communications device in the 
recreation space to call Bob.  The call events are included 
in the recreation space timeline.  Later Alice calls Bob 
using the communication device in the work space. The 
call events are included in the work space timeline. 

3.7 Context Aware Collaboration  
Enterprise collaborations have two factors that distinguish 
them from other forms of collaborations.  One is the 
context that surrounds the collaboration and the other is the 
need for a sequence of related collaboration sessions over a 
period of time.  Note that though the participants are 
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important, often it is the case that the context and temporal 
aspects are important.  For example, collaborations that 
involve a project continue even if members of the team 
leave.  Discussion of context is beyond scope of this paper.  
However, we use context as a general term to capture key 
aspects of collaboration sessions such as the intent of the 
collaboration, temporal nature of data, content associated 
with the collaboration, information about participants, etc.  

One feature of such context aware collaborations is to 
allow applications, such as relevant contacts, to use the 
context to mine relevant data to generate a user specific 
view for the session.  One can see that the intent of one 
participant, a customer, could be the context of a 
collaboration.  This collaboration would involve an 

appropriate customer agent with one or more experts trying 
to resolve the customer issue. 

3.8 Groups in Collaboration Spaces 
ConnectedSpaces provides a notion of a group, where a set 
of users can be identified as a group.  Their capabilities and 
access controls can be managed as a group.  This group 
could have a separate group view that contains data mined 
from the group’s information and shared among members 
of the group.   The ability to have groups allows 
collaborations to include a large set of people without 
requiring all of them to be part of the space and without 
managing their individual identities. 

 
Table 2 Comparison of Features 

Feature Wave Virtual world Web-Based  
Collaboration 

Tools 

Groove 
(Sharepoint) 

Connected-
Spaces 

User-View Yes 
(Static only) 

Partially No Yes 
(static) 

Yes 
(Static and 
Dynamic) 

Sharing Views No No No No Yes 

Managing Views Partially Partially No No Yes 

Initiation of Sessions Yes Partially No Partially Yes 

Session Template Yes Yes Yes (limited) Yes Yes 

Inter-Session Communication No No Yes (in a limited 
way) 

 Yes 

Nested Session No No No  Yes 

Navigation Limited 
dependency 
with contacts, 
presence and 
participation 

Yes Independent Limited 
dependency 
with contacts, 
presence and 
participation 

Yes 

Collaboration Spaces as end-
points 

No No No No Yes 

Groups and Groups Views in 
Collaboration Sessions 

No No No No Yes 

Table 1 compares the proposed features in 
ConnectedSpaces with other collaboration platforms.  The 
term ‘static only’ indicates that a collaboration platform 
allows the feature to be included in its space but only as a 
static feature.  That is, while Google Wave allows 
personalized contact view, the view is static and does not 
change based on activity across the collaboration space.   
Further, the term ‘independent’ in the Navigation row 
suggests that within a collaboration session, gadgets have 
to be independently navigated and do not automatically 
react to changes in other gadgets. 

4. FRAMEWORK  
Figure 3 shows the ConnectedSpaces framework. Based on 
the collaboration space model in Figure 1, the framework 
consists of three layers. The bottom layer manages the 

three dimensions of the collaboration space; the mid-layer 
manages the entities in the collaboration space; and the 
upper layer consists of collaboration applications. All 
layers can access data entries through the data access API. 

In the bottom layer, the semantic store manages 
information mined from persistent collaboration data, such 
as keywords extracted from users’ emails and conversation 
tags. The timer manages timestamps and can generate 
timeout events. The resource manager handles devices and 
media servers. The space manager contains helper 
functions that can manage multiple collaboration spaces. 
For example, our ConnectedSpaces framework may embed 
collaboration spaces of Google Wave and Avaya web.alive. 
In this case, different models of collaboration spaces need 
to be translated to a sharable view. 
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Figure 3. Enterprise Collaboration Framework

In the mid-layer, the robot factory handles system created 
robots, and the object factory manages the objects in the 
collaboration space. The user manager handles user 
registration and manages user profiles. The session 
manager can create, update, and delete sessions and 
maintains session information. The event manager and data 
manager contain helper functions that manage events and 
session data in the mid-layer. 

The upper layer contains different applications that can 
manipulate sessions, users, robots, and objects. The 
applications can subscribe to the event manager to get 
event notification. They can also interact with other 
applications in enterprise cloud or over the Internet.  

Figure 4 shows an example of nesting two sub-spaces in a 
ConnectedSpaces space and sharing views across spaces. 
In this figure, Alice’s view of Bob is a personalized version 
of Bob’s social profile that is specific to Alice. This 
personalized social profile can be generated by mining into 
Alice’s wave conversations. Alice’s avatar in the 
ConnectedSpaces space can then access and bring this view 

to the collaboration space in the Second Life, a virtual 
world environment. When Alice meets Bob in the Second 
Life, this view can be shown along side of Bob. Alice can 
also share this view with the third user, Tom, for a specific 
duration of time in the ConnectedSpaces space. During the 
sharing period, when Tom meets Bob in the Second Life 
space, Tom may also see the view. To achieve this feature, 
we need the data manager in the mid-layer to collect data, 
the analytical application in the upper layer to mine the 
data and generate the view, and the semantic store in the 
bottom layer to store the view. The space container in the 
lower layer can manage the relationship of the 
ConnectedSpaces space, Google Wave space, and the 
collaboration space in the Second Life. The policy manager 
in the upper layer and the user manager in the mid-layer 
can handle access control. When two users meet in Second 
Life, the event manager gets the event and the session 
manager creates a session with two users. During the 
session, the object factory creates a view object from the 
ConnectedSpaces space and presents it in the Second Life. 

semantic store timer resource 
manager

session 
manager

user 
manager

routing 
app

obj 
factory

device 
manager

media
orchestration

database

Collaboration Space API

learning reasoning mining

d
a
t
a 

a
c
c
e
s
s
 

A
P
I

directory

robot 
factory

policy 
manager

Application API

analytical 
app

data 
manager

Internet
gadgets

Internet

cloud
gadgets …...

…...

enterprise 
cloud

event 
manager

bottom
layer

mid-
layer

upper
layer

…...
space 

container

2D 3D

167



 
Figure 4. Cross space view sharing

The semantic meaning of entities can enable many new 
collaboration features. For example, in Figure 4, Alice may 
group people in her contact list based on the views of those 
contacts. She can then perform certain activities based on 
those semantic groups, such as “sending Google Wave 
invitation to all the engineers in my contact list”. Note that 
the “view mining” and “view sharing” features in Figure 4 
enables this “semantic grouping” feature. If the mined 
semantic information is inaccurate, the “semantic 
grouping” features may misbehave.  

5. IMPLEMENTATION WORK 
Based on the model we introduced in Section 0, we defined 
our ConnectedSpaces collaboration framework as shown in 
Figure 3. We are in the process of implementing the 
framework presented in Figure 3. In this section, we 
present several components from our current prototype 
implementations and relate them to the features and the 
framework discussed in this paper.    

In the bottom layer of the framework, we are building a 
semantic store by mining users’ emails, call histories, and 
other documents and generate different views of users’ 
collaboration space information. We have also 
implemented functions that can import views from our 
collaboration space into Google Wave and the Second Life, 
as shown in Figure 5.  

5.1.1 Session Extension to Google Wave 
We extended [19] Google Wave  to bring session context 
information, such as related documents and recent shared 
contacts, from our collaboration space into Google Wave. 
In addition, we also allow Google Wave users to control 
their enterprise voice communication session. The most 
difficult part of the integration is to allow enterprise 
information to cross enterprise boundary and enters Google 
Wave space. We use a border gateway for data access and 
use a Google wavebot to retrieve the information and a 
wave gadget to present the information. Figure 5 shows the 
architecture of the integration [19]. 

 
Figure 5 Session Context Integration [19]. 
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5.1.2 Integration with the Second Life 

 
Figure 6 Collaboration Space in Virtual Worlds [20] 

Figure 6 captures two avatars interacting in Second Life in 
the collaboration space, a customer care center, we created.  
This customer care center contains various interactive 3D 
objects, communication objects, and access control 
mechanisms that are tied back to enterprise servers.  Some 
components of our  architecture and a use case scenario of 
our implementation is described in [20].   We limit the 
discussion of our implementation to its relation to the 
concepts discussed in this paper, which are as follows. 

1. Personal Views: Avatars can come in and check the 
status of their requests.  Also, agents can come in and 
check the status of their pending jobs. 

2. Sharing Views:  Some users can come in and check the 
status of pending requests and can offer help if they 
can (like a passerby helping in a real-world scenario). 

3. Managing Spaces: Objects in the collaboration space 
are managed by the enterprise as resources via a 
resource manager as depicted in Figure 2.  Managing 
resources includes access controls, allocating, and 
clearing up resources. 

4. Context Aware Collaboration: Communication enabled 
from within this collaboration space captures the 
context and sends it back to enterprise.  In Figure 4, 
this communication is initiated by the object termed as 
Avaya.  Based on the context, in this case a service 
request by a customer, the enterprise service can bring 
in appropriate agent, resources, and/or initiated 
communication sessions. 

6. SUMMARY 
Existing online collaboration tools and platforms provide 
basic communications integration and the ability to include 

some real-time information sources. For enterprise use 
there are requirements for extending these tools with better 
integration with existing intelligent communication 
systems, simplifying the collaboration life cycle, enabling 
the collaboration process, and being able to support long-
term collaborations in a variety of ways. We presented a 
new model for such a collaboration environment called 
ConnectedSpaces. Like a number of existing systems, 
ConnectedSpaces uses a collaboration space as the basic 
construct. We presented important feature sets of 
ConnectedSpaces, including views, spaces as 
communication endpoints, space persistence and 
structuring, and a variety of types of embedded objects. We 
then described novel features of the ConnectedSpaces 
framework, including space  history, embedded gadgets 
and robots, semantic processing, and integration with  other 
collaboration frameworks. Finally we illustrated specific 
ConnectedSpaces functionality with examples from 
experimental work.  Separately we have discussed new 
types of feature interactions in ConnectedSpaces and an 
approach to feature interaction detection [22]. 
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